【2.0 API】Add conv1d_transpose API (#26356)

test_feature_precision_test_c
whs 5 years ago committed by GitHub
parent 7bd7b1884b
commit dea7d7d173
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,229 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest
class ConvTranspose1dTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=4,
spartial_shape=16,
in_channels=6,
out_channels=8,
filter_size=3,
output_size=None,
padding=0,
output_padding=0,
stride=1,
dilation=1,
groups=1,
no_bias=False,
data_format="NCL",
dtype="float32"):
super(ConvTranspose1dTestCase, self).__init__(methodName)
self.batch_size = batch_size
self.in_channels = in_channels
self.out_channels = out_channels
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.output_size = output_size
self.padding = padding
self.output_padding = output_padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.no_bias = no_bias
self.data_format = data_format
self.dtype = dtype
def setUp(self):
self.channel_last = False if self.data_format == "NCL" else True
input_shape = (self.batch_size, self.in_channels,
self.spartial_shape) if not self.channel_last else (
self.batch_size,
self.spartial_shape,
self.in_channels, )
self.input = np.random.randn(*input_shape).astype(self.dtype)
if isinstance(self.filter_size, int):
filter_size = [self.filter_size]
else:
filter_size = self.filter_size
self.weight_shape = weight_shape = (self.in_channels, self.out_channels
// self.groups) + tuple(filter_size)
self.weight = np.random.uniform(
-1, 1, size=weight_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(
-1, 1, size=(self.out_channels, )).astype(self.dtype)
else:
self.bias = None
def functional(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, self.in_channels,
-1) if not self.channel_last else (
-1, -1, self.in_channels)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
w_var = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
b_var = fluid.data(
"bias", (self.out_channels, ), dtype=self.dtype)
y_var = F.conv_transpose1d(
x_var,
w_var,
None if self.no_bias else b_var,
output_size=self.output_size,
padding=self.padding,
output_padding=self.output_padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
feed_dict = {"input": self.input, "weight": self.weight}
if self.bias is not None:
feed_dict["bias"] = self.bias
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def paddle_nn_layer(self):
x_var = paddle.to_tensor(self.input)
conv = nn.ConvTranspose1d(
self.in_channels,
self.out_channels,
self.filter_size,
padding=self.padding,
output_padding=self.output_padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
conv.weight.set_value(self.weight)
if not self.no_bias:
conv.bias.set_value(self.bias)
y_var = conv(x_var, output_size=self.output_size)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
result1 = self.functional(place)
with dg.guard(place):
result2 = self.paddle_nn_layer()
np.testing.assert_array_almost_equal(result1, result2)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self._test_equivalence(place)
class ConvTranspose1dErrorTestCase(ConvTranspose1dTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(ValueError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(ConvTranspose1dTestCase(methodName='runTest'))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest', stride=[2], no_bias=True, dilation=2))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest',
filter_size=(3),
output_size=[36],
stride=[2],
dilation=2))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest', stride=2, dilation=(2)))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest', padding="valid"))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest', padding='valid'))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest', filter_size=1, padding=3))
suite.addTest(ConvTranspose1dTestCase(methodName='runTest', padding=[2]))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest', data_format="NLC"))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest', groups=2, padding="valid"))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest',
out_channels=6,
in_channels=3,
groups=3,
padding="valid"))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest',
data_format="NLC",
spartial_shape=16,
output_size=18))
suite.addTest(
ConvTranspose1dTestCase(
methodName='runTest', data_format="NLC", stride=3,
output_padding=2))
def add_error_cases(suite):
suite.addTest(
ConvTranspose1dErrorTestCase(
methodName='runTest', data_format="not_valid"))
suite.addTest(
ConvTranspose1dErrorTestCase(
methodName='runTest', in_channels=5, groups=2))
suite.addTest(
ConvTranspose1dErrorTestCase(
methodName='runTest', stride=2, output_padding=3))
suite.addTest(
ConvTranspose1dErrorTestCase(
methodName='runTest', output_size="not_valid"))
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
add_cases(suite)
add_error_cases(suite)
return suite
if __name__ == '__main__':
unittest.main()

@ -97,6 +97,7 @@ from .layer.pooling import AdaptiveAvgPool3d #DEFINE_ALIAS
from .layer.conv import Conv1d #DEFINE_ALIAS from .layer.conv import Conv1d #DEFINE_ALIAS
from .layer.conv import Conv2d #DEFINE_ALIAS from .layer.conv import Conv2d #DEFINE_ALIAS
from .layer.conv import Conv3d #DEFINE_ALIAS from .layer.conv import Conv3d #DEFINE_ALIAS
from .layer.conv import ConvTranspose1d #DEFINE_ALIAS
from .layer.conv import ConvTranspose2d #DEFINE_ALIAS from .layer.conv import ConvTranspose2d #DEFINE_ALIAS
from .layer.conv import ConvTranspose3d #DEFINE_ALIAS from .layer.conv import ConvTranspose3d #DEFINE_ALIAS
# from .layer.conv import TreeConv #DEFINE_ALIAS # from .layer.conv import TreeConv #DEFINE_ALIAS

@ -71,6 +71,7 @@ from .common import unfold #DEFINE_ALIAS
from .common import assign #DEFINE_ALIAS from .common import assign #DEFINE_ALIAS
from .common import interpolate #DEFINE_ALIAS from .common import interpolate #DEFINE_ALIAS
from .conv import conv1d #DEFINE_ALIAS from .conv import conv1d #DEFINE_ALIAS
from .conv import conv_transpose1d #DEFINE_ALIAS
from .conv import conv2d #DEFINE_ALIAS from .conv import conv2d #DEFINE_ALIAS
from .conv import conv_transpose2d #DEFINE_ALIAS from .conv import conv_transpose2d #DEFINE_ALIAS
from .conv import conv3d #DEFINE_ALIAS from .conv import conv3d #DEFINE_ALIAS

File diff suppressed because it is too large Load Diff

@ -61,6 +61,7 @@ from .pooling import AdaptiveAvgPool3d #DEFINE_ALIAS
from .conv import Conv1d #DEFINE_ALIAS from .conv import Conv1d #DEFINE_ALIAS
from .conv import Conv2d #DEFINE_ALIAS from .conv import Conv2d #DEFINE_ALIAS
from .conv import Conv3d #DEFINE_ALIAS from .conv import Conv3d #DEFINE_ALIAS
from .conv import ConvTranspose1d #DEFINE_ALIAS
from .conv import ConvTranspose2d #DEFINE_ALIAS from .conv import ConvTranspose2d #DEFINE_ALIAS
from .conv import ConvTranspose3d #DEFINE_ALIAS from .conv import ConvTranspose3d #DEFINE_ALIAS
# from .conv import TreeConv #DEFINE_ALIAS # from .conv import TreeConv #DEFINE_ALIAS

@ -18,6 +18,7 @@ __all__ = [
'Conv1d', 'Conv1d',
'Conv2d', 'Conv2d',
'Conv3d', 'Conv3d',
'ConvTranspose1d',
'ConvTranspose2d', 'ConvTranspose2d',
'ConvTranspose3d', 'ConvTranspose3d',
] ]
@ -374,7 +375,6 @@ class Conv2d(_ConvNd):
Examples: Examples:
.. code-block:: python .. code-block:: python
import numpy as np import numpy as np
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32') x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
@ -443,6 +443,191 @@ class Conv2d(_ConvNd):
return out return out
class ConvTranspose1d(layers.Layer):
"""
This interface is used to construct a callable object of the ``ConvTranspose1d`` class.
For more details, refer to code examples.
The 1-D convolution transpose layer calculates the output based on the input,
filter, and dilation, stride, padding. Input(Input) and output(Output)
are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
L is the length of the feature. The details of convolution transpose
layer, please refer to the following explanation and references
`therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
* :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, L_{in})`
Filter shape: :math:`(C_{in}, C_{out}, L_f)`
- Output:
Output shape: :math:`(N, C_{out}, L_{out})`
Where
.. math::
L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]
Note:
The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
when stride > 1, conv1d maps multiple input shape to the same output shape,
so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`L_{out} = L^\prime_{out}`;
else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.
Args:
in_channels(int): The number of channels in the input image.
out_channels(int): The number of the filter. It is as same as the output
feature map.
kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
it must contain one integers, (kernel_size). None if
use output size to calculate kernel_size. Default: None. kernel_size and
output_size should not be None at the same time.
stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain one integer, (stride_size).
Default: stride = 1.
padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
`dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
If `padding` is a tuple or list, it could be in two forms:
`[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
If it is a tuple, it must contain one integer. Default: 0.
groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups = 1.
bias(bool, optional): Whether to use bias. Default: True.
dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain one integer, (dilation_size).
Default: dilation = 1.
weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv1d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Shape:
- x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is
"NCL" or shape (batch, length, in_channels) when data_format is "NLC".
- output_size(int|tuple|list, optional): The output image size. If output size is a
tuple, it must contain one integer, (feature_length). None if use
kernel_size, padding, output_padding and stride to calculate output_size.
If output_size and kernel_size are specified at the same time, They
should follow the formula above. Default: None. output_size and kernel_size
should not be None at the same time.
- output(Tensor): 3-D tensor with same shape as input x.
Examples:
.. code-block:: python
import paddle
from paddle.nn import ConvTranspose1d
import numpy as np
paddle.disable_static()
# shape: (1, 2, 4)
x=np.array([[[4, 0, 9, 7],
[8, 0, 9, 2]]]).astype(np.float32)
# shape: (2, 1, 2)
y=np.array([[[7, 0]],
[[4, 2]]]).astype(np.float32)
x_t = paddle.to_tensor(x)
conv = ConvTranspose1d(2, 1, 2)
conv.weight.set_value(y)
y_t = conv(x_t)
y_np = y_t.numpy()
print y_np
# [[[60. 16. 99. 75. 4.]]]
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
output_padding=0,
groups=1,
bias=True,
dilation=1,
weight_attr=None,
bias_attr=None,
data_format="NCL"):
super(ConvTranspose1d, self).__init__()
assert weight_attr is not False, "param_attr should not be False in ConvTranspose1d."
self._param_attr = weight_attr
self._bias_attr = bias_attr
self._groups = groups
self._in_channels = in_channels
self._out_channels = out_channels
self._output_padding = output_padding
self._data_format = data_format
self._bias = bias
self._stride = utils.convert_to_list(stride, 1, 'stride')
self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
self._padding = padding
filter_shape = [self._in_channels, out_channels // groups
] + self._kernel_size
self.weight = self.create_parameter(
shape=filter_shape, attr=self._param_attr)
self.bias = self.create_parameter(
attr=self._bias_attr, shape=[self._out_channels],
is_bias=True) if self._bias else None
def forward(self, x, output_size=None):
out = F.conv_transpose1d(
x,
self.weight,
bias=self.bias,
output_size=output_size,
output_padding=self._output_padding,
padding=self._padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
data_format=self._data_format)
return out
class ConvTranspose2d(_ConvNd): class ConvTranspose2d(_ConvNd):
""" """
This interface is used to construct a callable object of the ``ConvTranspose2d`` class. This interface is used to construct a callable object of the ``ConvTranspose2d`` class.

Loading…
Cancel
Save