|
|
|
@ -15,17 +15,14 @@
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
|
|
|
|
typename IndexType = Eigen::DenseIndex>
|
|
|
|
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
|
|
|
|
using framework::Tensor;
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void KeBilinearInterpFw(
|
|
|
|
|
__global__ void KeNearestNeighborInterpFw(
|
|
|
|
|
const T* in, const size_t in_img_h, const size_t in_img_w,
|
|
|
|
|
const size_t input_h, const size_t input_w, T* out, const size_t out_img_h,
|
|
|
|
|
const size_t out_img_w, const size_t output_h, const size_t output_w,
|
|
|
|
|
const size_t num_channels, const T ratio_h, const T ratioW) {
|
|
|
|
|
const size_t num_channels, const T ratio_h, const T ratio_w) {
|
|
|
|
|
int nthreads = output_h * output_w;
|
|
|
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
if (tid < nthreads) {
|
|
|
|
@ -36,34 +33,22 @@ __global__ void KeBilinearInterpFw(
|
|
|
|
|
int channel_id = out_id_w / out_img_size;
|
|
|
|
|
|
|
|
|
|
int out_img_idy = (out_id_w % out_img_size) / out_img_w;
|
|
|
|
|
int in_img_idy = ratio_h * out_img_idy;
|
|
|
|
|
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
|
|
|
|
|
T h1lambda = ratio_h * out_img_idy - in_img_idy;
|
|
|
|
|
T h2lambda = 1.f - h1lambda;
|
|
|
|
|
int in_img_idy = static_cast<int>(round(ratio_h * out_img_idy));
|
|
|
|
|
|
|
|
|
|
int out_img_idx = tid % out_img_w;
|
|
|
|
|
int in_img_idx = ratioW * out_img_idx;
|
|
|
|
|
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
|
|
|
|
|
T w1lambda = ratioW * out_img_idx - in_img_idx;
|
|
|
|
|
T w2lambda = 1.f - w1lambda;
|
|
|
|
|
|
|
|
|
|
const T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
|
|
|
|
|
in_img_idy * in_img_w + in_img_idx];
|
|
|
|
|
|
|
|
|
|
// bilinear interpolation
|
|
|
|
|
out[out_id_h * output_w + out_id_w] =
|
|
|
|
|
h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[w_id]) +
|
|
|
|
|
h1lambda * (w2lambda * in_pos[h_id * in_img_w] +
|
|
|
|
|
w1lambda * in_pos[h_id * in_img_w + w_id]);
|
|
|
|
|
int in_img_idx = static_cast<int>(round(ratio_w * out_img_idx));
|
|
|
|
|
|
|
|
|
|
out[tid] = in[out_id_h * input_w + channel_id * in_img_size +
|
|
|
|
|
in_img_idy * in_img_w + in_img_idx];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void KeBilinearInterpBw(
|
|
|
|
|
__global__ void KeNearestNeighborInterpBw(
|
|
|
|
|
T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h,
|
|
|
|
|
const size_t input_w, const T* out, const size_t out_img_h,
|
|
|
|
|
const size_t out_img_w, const size_t output_h, const size_t output_w,
|
|
|
|
|
const size_t num_channels, const T ratio_h, const T ratioW) {
|
|
|
|
|
const size_t num_channels, const T ratio_h, const T ratio_w) {
|
|
|
|
|
int nthreads = output_h * output_w;
|
|
|
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
if (tid < nthreads) {
|
|
|
|
@ -74,25 +59,15 @@ __global__ void KeBilinearInterpBw(
|
|
|
|
|
int channel_id = out_id_w / out_img_size;
|
|
|
|
|
|
|
|
|
|
int out_img_idy = (out_id_w % out_img_size) / out_img_w;
|
|
|
|
|
int in_img_idy = ratio_h * out_img_idy;
|
|
|
|
|
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
|
|
|
|
|
T h1lambda = ratio_h * out_img_idy - in_img_idy;
|
|
|
|
|
T h2lambda = 1.f - h1lambda;
|
|
|
|
|
int in_img_idy = static_cast<int>(round(ratio_h * out_img_idy));
|
|
|
|
|
|
|
|
|
|
int out_img_idx = tid % out_img_w;
|
|
|
|
|
int in_img_idx = ratioW * out_img_idx;
|
|
|
|
|
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
|
|
|
|
|
T w1lambda = ratioW * out_img_idx - in_img_idx;
|
|
|
|
|
T w2lambda = 1.f - w1lambda;
|
|
|
|
|
int in_img_idx = static_cast<int>(round(ratio_w * out_img_idx));
|
|
|
|
|
|
|
|
|
|
T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
|
|
|
|
|
in_img_idy * in_img_w + in_img_idx];
|
|
|
|
|
const T* out_pos = &out[out_id_h * output_w + out_id_w];
|
|
|
|
|
atomicAdd(&in_pos[0], h2lambda * w2lambda * out_pos[0]);
|
|
|
|
|
atomicAdd(&in_pos[w_id], h2lambda * w1lambda * out_pos[0]);
|
|
|
|
|
atomicAdd(&in_pos[h_id * in_img_w], h1lambda * w2lambda * out_pos[0]);
|
|
|
|
|
atomicAdd(&in_pos[h_id * in_img_w + w_id],
|
|
|
|
|
h1lambda * w1lambda * out_pos[0]);
|
|
|
|
|
const T out_pos = out[out_id_h * output_w + out_id_w];
|
|
|
|
|
atomicAdd(in_pos, out_pos);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -102,48 +77,49 @@ class NearestNeighborInterpOpCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
|
|
|
"This kernel only runs on GPU device.");
|
|
|
|
|
auto* input_t = ctx.Input<Tensor>("X"); // float tensor
|
|
|
|
|
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor
|
|
|
|
|
auto* input = input_t->data<T>();
|
|
|
|
|
auto* input = ctx.Input<Tensor>("X"); // float tensor
|
|
|
|
|
auto* output = ctx.Output<Tensor>("Out"); // float tensor
|
|
|
|
|
auto* input_data = input->data<T>();
|
|
|
|
|
|
|
|
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
|
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
|
|
|
auto out_dims = output_t->dims();
|
|
|
|
|
auto out_size_t = ctx.Input<Tensor>("OutSize");
|
|
|
|
|
if (out_size_t != nullptr) {
|
|
|
|
|
auto out_size = ctx.Input<Tensor>("OutSize");
|
|
|
|
|
if (out_size != nullptr) {
|
|
|
|
|
Tensor sizes;
|
|
|
|
|
framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes);
|
|
|
|
|
framework::TensorCopy(*out_size, platform::CPUPlace(), &sizes);
|
|
|
|
|
auto size_data = sizes.data<int>();
|
|
|
|
|
out_h = size_data[0];
|
|
|
|
|
out_w = size_data[1];
|
|
|
|
|
}
|
|
|
|
|
auto* output = output_t->mutable_data<T>(
|
|
|
|
|
{out_dims[0], out_dims[1], out_h, out_w}, ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
int batch_size = input_t->dims()[0];
|
|
|
|
|
int channels = input_t->dims()[1];
|
|
|
|
|
int in_h = input_t->dims()[2];
|
|
|
|
|
int in_w = input_t->dims()[3];
|
|
|
|
|
int n = input->dims()[0];
|
|
|
|
|
int c = input->dims()[1];
|
|
|
|
|
int in_h = input->dims()[2];
|
|
|
|
|
int in_w = input->dims()[3];
|
|
|
|
|
|
|
|
|
|
auto* output_data =
|
|
|
|
|
output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
int in_hw = in_h * in_w;
|
|
|
|
|
int out_hw = out_h * out_w;
|
|
|
|
|
int in_chw = channels * in_hw;
|
|
|
|
|
int out_chw = channels * out_hw;
|
|
|
|
|
int in_chw = c * in_hw;
|
|
|
|
|
int out_chw = c * out_hw;
|
|
|
|
|
|
|
|
|
|
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
|
|
|
|
|
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
|
|
|
|
|
|
|
|
|
|
if (in_h == out_h && in_w == out_w) {
|
|
|
|
|
memcpy(output, input, input_t->numel() * sizeof(T));
|
|
|
|
|
} else {
|
|
|
|
|
int threadNum = batch_size * out_chw;
|
|
|
|
|
int blocks = (threadNum + 1024 - 1) / 1024;
|
|
|
|
|
|
|
|
|
|
KeBilinearInterpFw<
|
|
|
|
|
T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
|
|
|
|
|
input, in_h, in_w, batch_size, in_chw, output, out_h, out_w,
|
|
|
|
|
batch_size, out_chw, channels, ratio_h, ratio_w);
|
|
|
|
|
memcpy(output_data, input_data, input->numel() * sizeof(T));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int threadNum = n * out_chw;
|
|
|
|
|
int blocks = (threadNum + 1024 - 1) / 1024;
|
|
|
|
|
|
|
|
|
|
KeNearestNeighborInterpFw<
|
|
|
|
|
T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
|
|
|
|
|
input_data, in_h, in_w, n, in_chw, output_data, out_h, out_w, n,
|
|
|
|
|
out_chw, c, ratio_h, ratio_w);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
@ -151,52 +127,53 @@ template <typename T>
|
|
|
|
|
class NearestNeighborInterpGradOpCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* d_output = d_output_t->data<T>();
|
|
|
|
|
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* output_grad_data = output_grad->data<T>();
|
|
|
|
|
auto* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto& device_ctx =
|
|
|
|
|
ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
|
math::SetConstant<platform::CUDADeviceContext, T> zero;
|
|
|
|
|
zero(device_ctx, d_input_t, static_cast<T>(0.0));
|
|
|
|
|
zero(device_ctx, input_grad, static_cast<T>(0.0));
|
|
|
|
|
|
|
|
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
|
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
|
|
|
|
|
|
|
|
auto out_size_t = ctx.Input<Tensor>("OutSize");
|
|
|
|
|
if (out_size_t != nullptr) {
|
|
|
|
|
auto out_size = ctx.Input<Tensor>("OutSize");
|
|
|
|
|
if (out_size != nullptr) {
|
|
|
|
|
Tensor sizes;
|
|
|
|
|
framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes);
|
|
|
|
|
framework::TensorCopy(*out_size, platform::CPUPlace(), &sizes);
|
|
|
|
|
auto size_data = sizes.data<int>();
|
|
|
|
|
out_h = size_data[0];
|
|
|
|
|
out_w = size_data[1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int batch_size = d_input_t->dims()[0];
|
|
|
|
|
int channels = d_input_t->dims()[1];
|
|
|
|
|
int in_h = d_input_t->dims()[2];
|
|
|
|
|
int in_w = d_input_t->dims()[3];
|
|
|
|
|
int n = input_grad->dims()[0];
|
|
|
|
|
int c = input_grad->dims()[1];
|
|
|
|
|
int in_h = input_grad->dims()[2];
|
|
|
|
|
int in_w = input_grad->dims()[3];
|
|
|
|
|
|
|
|
|
|
int in_hw = in_h * in_w;
|
|
|
|
|
int out_hw = out_h * out_w;
|
|
|
|
|
int in_chw = channels * in_hw;
|
|
|
|
|
int out_chw = channels * out_hw;
|
|
|
|
|
int in_chw = c * in_hw;
|
|
|
|
|
int out_chw = c * out_hw;
|
|
|
|
|
|
|
|
|
|
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
|
|
|
|
|
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
|
|
|
|
|
|
|
|
|
|
if (in_h == out_h && in_w == out_w) {
|
|
|
|
|
memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
|
|
|
|
|
} else {
|
|
|
|
|
int threadNum = batch_size * out_chw;
|
|
|
|
|
int blocks = (threadNum + 1024 - 1) / 1024;
|
|
|
|
|
|
|
|
|
|
KeBilinearInterpBw<
|
|
|
|
|
T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
|
|
|
|
|
d_input, in_h, in_w, batch_size, in_chw, d_output, out_h, out_w,
|
|
|
|
|
batch_size, out_chw, channels, ratio_h, ratio_w);
|
|
|
|
|
memcpy(input_grad, output_grad, input_grad->numel() * sizeof(T));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int threadNum = n * out_chw;
|
|
|
|
|
int blocks = (threadNum + 1024 - 1) / 1024;
|
|
|
|
|
|
|
|
|
|
KeNearestNeighborInterpBw<
|
|
|
|
|
T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
|
|
|
|
|
input_grad_data, in_h, in_w, n, in_chw, output_grad_data, out_h, out_w,
|
|
|
|
|
n, out_chw, c, ratio_h, ratio_w);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
@ -206,5 +183,5 @@ class NearestNeighborInterpGradOpCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
|
REGISTER_OP_CUDA_KERNEL(nearest_neighbor_interp,
|
|
|
|
|
ops::NearestNeighborInterpOpCUDAKernel<float>);
|
|
|
|
|
REGISTER_OP_CUDA_KERNEL(nearest_neighborinterp_grad,
|
|
|
|
|
REGISTER_OP_CUDA_KERNEL(nearest_neighbor_interp_grad,
|
|
|
|
|
ops::NearestNeighborInterpGradOpCUDAKernel<float>);
|
|
|
|
|