Support npu kernel for gather op (#31458)
* add gather npu op * code review done * update python new line * precommit * fix review * del commitrevert-31562-mean
parent
15823bb0df
commit
e19195f795
@ -0,0 +1,96 @@
|
|||||||
|
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/gather_op.h"
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/tensor_util.h"
|
||||||
|
#include "paddle/fluid/operators/kron_op.h"
|
||||||
|
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class GatherOpNPUKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||||
|
auto *x = ctx.Input<Tensor>("X");
|
||||||
|
auto *index = ctx.Input<Tensor>("Index");
|
||||||
|
auto *out = ctx.Output<Tensor>("Out");
|
||||||
|
|
||||||
|
out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
auto runner = NpuOpRunner("Gather", {*x, *index}, {*out},
|
||||||
|
{{"validate_indices", true}});
|
||||||
|
auto stream =
|
||||||
|
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||||
|
.stream();
|
||||||
|
runner.Run(stream);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class GatherGradOpNPUKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||||
|
auto *index = ctx.Input<Tensor>("Index");
|
||||||
|
auto *x = ctx.Input<Tensor>("X");
|
||||||
|
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
|
||||||
|
// step1: Unsqueeze index
|
||||||
|
const auto index_dims = index->dims();
|
||||||
|
if (index_dims.size() == 1) {
|
||||||
|
framework::Tensor tmp_index = UnsqueezeTo(*index, 2);
|
||||||
|
index = &tmp_index;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto stream =
|
||||||
|
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||||
|
.stream();
|
||||||
|
|
||||||
|
// step2: ZerosLike x in device
|
||||||
|
Tensor *tmp_zerox = const_cast<Tensor *>(x);
|
||||||
|
Tensor zeroslike_xout(x->type());
|
||||||
|
zeroslike_xout.Resize(x->dims());
|
||||||
|
zeroslike_xout.mutable_data<T>(ctx.GetPlace());
|
||||||
|
|
||||||
|
auto runner_zeroslike =
|
||||||
|
NpuOpRunner("ZerosLike", {*x}, {zeroslike_xout}, {});
|
||||||
|
runner_zeroslike.Run(stream);
|
||||||
|
tmp_zerox = &zeroslike_xout;
|
||||||
|
|
||||||
|
// step3: scatter(x_grad)
|
||||||
|
dx->mutable_data<T>(ctx.GetPlace());
|
||||||
|
auto runner_scatter = NpuOpRunner("TensorScatterUpdate",
|
||||||
|
{*tmp_zerox, *index, *dout}, {*dx}, {});
|
||||||
|
runner_scatter.Run(stream);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_NPU_KERNEL(
|
||||||
|
gather, ops::GatherOpNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||||
|
ops::GatherOpNPUKernel<paddle::platform::NPUDeviceContext,
|
||||||
|
paddle::platform::float16>);
|
||||||
|
|
||||||
|
REGISTER_OP_NPU_KERNEL(
|
||||||
|
gather_grad,
|
||||||
|
ops::GatherGradOpNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||||
|
ops::GatherGradOpNPUKernel<paddle::platform::NPUDeviceContext,
|
||||||
|
paddle::platform::float16>);
|
||||||
@ -0,0 +1,169 @@
|
|||||||
|
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#ifndef _WIN32
|
||||||
|
#include <unistd.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <thread> // NOLINT
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "gtest/gtest.h"
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/framework/operator.h"
|
||||||
|
#include "paddle/fluid/framework/program_desc.h"
|
||||||
|
#include "paddle/fluid/operators/gather_op.h"
|
||||||
|
#include "paddle/fluid/operators/math/math_function.h"
|
||||||
|
#include "paddle/fluid/string/printf.h"
|
||||||
|
|
||||||
|
namespace f = paddle::framework;
|
||||||
|
namespace p = paddle::platform;
|
||||||
|
namespace m = paddle::operators::math;
|
||||||
|
|
||||||
|
USE_OP(gather);
|
||||||
|
USE_OP_DEVICE_KERNEL(gather, NPU);
|
||||||
|
USE_OP(gather_grad);
|
||||||
|
USE_OP_DEVICE_KERNEL(gather_grad, NPU);
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void Compare(f::Scope* scope, const p::DeviceContext& ctx,
|
||||||
|
std::string op_type) {
|
||||||
|
// init
|
||||||
|
auto x = scope->Var("X");
|
||||||
|
auto tensor_x = x->GetMutable<f::LoDTensor>();
|
||||||
|
|
||||||
|
auto index = scope->Var("Index");
|
||||||
|
auto tensor_index = index->GetMutable<f::LoDTensor>();
|
||||||
|
|
||||||
|
std::vector<T> init_x;
|
||||||
|
for (int64_t i = 1; i < 7; ++i) {
|
||||||
|
// 1,2,3,4,5,6
|
||||||
|
init_x.push_back(static_cast<T>(i));
|
||||||
|
}
|
||||||
|
|
||||||
|
// [[1, 2],[3, 4],[5, 6]]
|
||||||
|
TensorFromVector(init_x, ctx, tensor_x);
|
||||||
|
tensor_x->Resize(paddle::framework::make_ddim({3, 2}));
|
||||||
|
|
||||||
|
std::vector<int> init_index = {1, 2};
|
||||||
|
paddle::framework::TensorFromVector<int>(init_index, ctx, tensor_index);
|
||||||
|
tensor_index->Resize(paddle::framework::make_ddim({2}));
|
||||||
|
|
||||||
|
ctx.Wait();
|
||||||
|
|
||||||
|
auto out = scope->Var("Out");
|
||||||
|
auto tensor_out = out->GetMutable<f::LoDTensor>();
|
||||||
|
|
||||||
|
// run
|
||||||
|
f::AttributeMap attrs = {{"validate_indices", true}};
|
||||||
|
auto op = f::OpRegistry::CreateOp(
|
||||||
|
op_type, {{"X", {"X"}}, {"Index", {"Index"}}}, {{"Out", {"Out"}}}, attrs);
|
||||||
|
|
||||||
|
auto place = ctx.GetPlace();
|
||||||
|
op->Run(*scope, place);
|
||||||
|
|
||||||
|
std::vector<T> out_vec;
|
||||||
|
TensorToVector(*tensor_out, ctx, &out_vec);
|
||||||
|
|
||||||
|
ctx.Wait();
|
||||||
|
|
||||||
|
// ref:https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api/paddle/tensor/manipulation/gather_cn.html#gather
|
||||||
|
for (int i = 0; i < static_cast<int>(out_vec.size()); ++i) {
|
||||||
|
VLOG(3) << "out_vec[" << i << "] : " << out_vec[i];
|
||||||
|
}
|
||||||
|
uint32_t expected_size = 4;
|
||||||
|
EXPECT_EQ((uint32_t)out_vec.size(), expected_size);
|
||||||
|
|
||||||
|
// {3, 4, 5, 6}
|
||||||
|
std::vector<T> expected_out_vec;
|
||||||
|
for (int64_t i = 3; i < 7; ++i) {
|
||||||
|
expected_out_vec.push_back(static_cast<T>(i));
|
||||||
|
}
|
||||||
|
for (uint32_t i = 0; i < out_vec.size(); i++) {
|
||||||
|
EXPECT_EQ(out_vec[i], expected_out_vec[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx,
|
||||||
|
std::string op_type) {
|
||||||
|
// init
|
||||||
|
auto index = scope->Var("Index");
|
||||||
|
auto tensor_index = index->GetMutable<f::LoDTensor>();
|
||||||
|
|
||||||
|
auto x = scope->Var("X");
|
||||||
|
auto tensor_x = x->GetMutable<f::LoDTensor>();
|
||||||
|
|
||||||
|
auto dout = scope->Var("DOut");
|
||||||
|
auto tensor_dout = dout->GetMutable<f::LoDTensor>();
|
||||||
|
|
||||||
|
std::vector<int> init_index = {0, 1, 2, 0};
|
||||||
|
paddle::framework::TensorFromVector<int>(init_index, ctx, tensor_index);
|
||||||
|
tensor_index->Resize(paddle::framework::make_ddim({2, 2}));
|
||||||
|
|
||||||
|
std::vector<T> init_x = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
||||||
|
TensorFromVector(init_x, ctx, tensor_x);
|
||||||
|
tensor_x->Resize(paddle::framework::make_ddim({3, 2}));
|
||||||
|
|
||||||
|
std::vector<T> init_dout = {5.0, 10.0};
|
||||||
|
TensorFromVector(init_dout, ctx, tensor_dout);
|
||||||
|
tensor_dout->Resize(paddle::framework::make_ddim({2}));
|
||||||
|
|
||||||
|
ctx.Wait();
|
||||||
|
|
||||||
|
auto dx = scope->Var("DX");
|
||||||
|
auto tensor_dx = dx->GetMutable<f::LoDTensor>();
|
||||||
|
|
||||||
|
// run
|
||||||
|
f::AttributeMap attrs;
|
||||||
|
auto op = f::OpRegistry::CreateOp(
|
||||||
|
op_type, {{"X", {"X"}}, {"Index", {"Index"}}, {"Out@GRAD", {"DOut"}}},
|
||||||
|
{{"X@GRAD", {"DX"}}}, attrs);
|
||||||
|
|
||||||
|
auto place = ctx.GetPlace();
|
||||||
|
op->Run(*scope, place);
|
||||||
|
|
||||||
|
std::vector<T> dx_vec;
|
||||||
|
TensorToVector(*tensor_dx, ctx, &dx_vec);
|
||||||
|
|
||||||
|
ctx.Wait();
|
||||||
|
|
||||||
|
uint32_t expected_size = 3 * 2;
|
||||||
|
EXPECT_EQ((uint32_t)dx_vec.size(), expected_size);
|
||||||
|
|
||||||
|
std::vector<T> expected_dx_vec = {0.0, 5.0, 0.0, 0.0, 10.0, 0.0};
|
||||||
|
for (uint32_t i = 0; i < dx_vec.size(); i++) {
|
||||||
|
VLOG(3) << "dx_vec[i]=" << dx_vec[i];
|
||||||
|
EXPECT_EQ(dx_vec[i], expected_dx_vec[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(gather, NPU_fp32) {
|
||||||
|
f::Scope scope;
|
||||||
|
p::NPUDeviceContext ctx(p::NPUPlace(0));
|
||||||
|
Compare<float>(&scope, ctx, "gather");
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(gather, NPU_fp16) {
|
||||||
|
f::Scope scope;
|
||||||
|
p::NPUDeviceContext ctx(p::NPUPlace(0));
|
||||||
|
Compare<p::float16>(&scope, ctx, "gather");
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(gather_grad, NPU_fp32) {
|
||||||
|
f::Scope scope;
|
||||||
|
p::NPUDeviceContext ctx(p::NPUPlace(0));
|
||||||
|
CompareGrad<float>(&scope, ctx, "gather_grad");
|
||||||
|
}
|
||||||
@ -0,0 +1,109 @@
|
|||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import unittest
|
||||||
|
import sys
|
||||||
|
sys.path.append("..")
|
||||||
|
from op_test import OpTest, _set_use_system_allocator
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
|
||||||
|
paddle.enable_static()
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||||
|
"core is not compiled with NPU")
|
||||||
|
class TestGatherOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.set_npu()
|
||||||
|
self.op_type = "gather"
|
||||||
|
self.place = paddle.NPUPlace(0)
|
||||||
|
self.init_dtype()
|
||||||
|
self.init_input_output()
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
|
||||||
|
'Index': OpTest.np_dtype_to_fluid_dtype(self.index)
|
||||||
|
}
|
||||||
|
self.attrs = {'validate_indices': True}
|
||||||
|
self.outputs = {'Out': self.out}
|
||||||
|
|
||||||
|
def set_npu(self):
|
||||||
|
self.__class__.use_npu = True
|
||||||
|
|
||||||
|
def init_input_output(self):
|
||||||
|
self.x = np.array([[1, 2], [3, 4], [5, 6]]).astype(self.dtype)
|
||||||
|
self.index = np.array([1, 2]).astype(np.int)
|
||||||
|
self.out = np.array([[3, 4], [5, 6]]).astype(self.dtype)
|
||||||
|
|
||||||
|
def init_dtype(self):
|
||||||
|
self.dtype = np.float32
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output_with_place(self.place, check_dygraph=False)
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||||
|
"core is not compiled with NPU")
|
||||||
|
class TestGatherAPI(unittest.TestCase):
|
||||||
|
def test_name(self):
|
||||||
|
with paddle.static.program_guard(paddle.static.Program()):
|
||||||
|
x = paddle.static.data(name="x", shape=[3, 2], dtype="float32")
|
||||||
|
index = paddle.static.data(name='index', shape=[1], dtype='int32')
|
||||||
|
|
||||||
|
out = paddle.gather(x, index, name='gather')
|
||||||
|
self.assertEqual(('gather' in out.name), True)
|
||||||
|
|
||||||
|
def test_static(self):
|
||||||
|
with paddle.static.program_guard(paddle.static.Program()):
|
||||||
|
|
||||||
|
x_np = np.array([[1, 2], [3, 4], [5, 6]]).astype('float32')
|
||||||
|
index_np = np.array([1, 2]).astype('int32')
|
||||||
|
|
||||||
|
x = paddle.static.data(name="x", shape=[3, 2], dtype='float32')
|
||||||
|
index = paddle.static.data(name="index", shape=[2], dtype='int32')
|
||||||
|
|
||||||
|
z = paddle.gather(x, index)
|
||||||
|
|
||||||
|
place = paddle.NPUPlace(0)
|
||||||
|
exe = paddle.static.Executor(place)
|
||||||
|
x_value, index_value, z_value = exe.run(
|
||||||
|
feed={"x": x_np,
|
||||||
|
"index": index_np}, fetch_list=[x, index, z])
|
||||||
|
|
||||||
|
z_expected = np.array([[3, 4], [5, 6]])
|
||||||
|
self.assertEqual(
|
||||||
|
(x_value == x_np).all(),
|
||||||
|
True,
|
||||||
|
msg="x_value = {}, but expected {}".format(x_value, x_np))
|
||||||
|
self.assertEqual(
|
||||||
|
(index_value == index_np).all(),
|
||||||
|
True,
|
||||||
|
msg="index_value = {}, but expected {}".format(index_value,
|
||||||
|
index_np))
|
||||||
|
self.assertEqual(
|
||||||
|
(z_value == z_expected).all(),
|
||||||
|
True,
|
||||||
|
msg="z_value = {}, but expected {}".format(z_value, z_expected))
|
||||||
|
|
||||||
|
def test_backward(self):
|
||||||
|
# TODO(ascendrc): Test backward after add grad npu op implemented.
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
||||||
Loading…
Reference in new issue