[NPU] accuracy op (#31492)
* accuracy op * fix license * fix * add test and fix bugrevert-31562-mean
parent
3bf8a34c69
commit
e1c33a6d69
@ -0,0 +1,124 @@
|
|||||||
|
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#ifdef PADDLE_WITH_ASCEND_CL
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/controlflow/compare_op.h"
|
||||||
|
#include "paddle/fluid/operators/metrics/accuracy_op.h"
|
||||||
|
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class AccuracyNPUKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* pred = ctx.Input<Tensor>("Out");
|
||||||
|
auto* label = ctx.Input<Tensor>("Label");
|
||||||
|
// auto* logits = ctx.Input<Tensor>("Indices");
|
||||||
|
|
||||||
|
auto* acc = ctx.Output<Tensor>("Accuracy");
|
||||||
|
auto* correct = ctx.Output<Tensor>("Correct");
|
||||||
|
auto* total = ctx.Output<Tensor>("Total");
|
||||||
|
auto stream =
|
||||||
|
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||||
|
.stream();
|
||||||
|
|
||||||
|
// cast pred
|
||||||
|
Tensor tmp_pred(pred->type());
|
||||||
|
tmp_pred.Resize(pred->dims());
|
||||||
|
tmp_pred.mutable_data<int>(ctx.GetPlace());
|
||||||
|
auto runner_cast_pred =
|
||||||
|
NpuOpRunner("Cast", {*pred}, {tmp_pred},
|
||||||
|
{{"dst_type", static_cast<int>(ACL_INT32)}});
|
||||||
|
runner_cast_pred.Run(stream);
|
||||||
|
|
||||||
|
// cast label
|
||||||
|
Tensor tmp_label(label->type());
|
||||||
|
tmp_label.Resize(label->dims());
|
||||||
|
tmp_label.mutable_data<int>(ctx.GetPlace());
|
||||||
|
auto runner_cast_label =
|
||||||
|
NpuOpRunner("Cast", {*label}, {tmp_label},
|
||||||
|
{{"dst_type", static_cast<int>(ACL_INT32)}});
|
||||||
|
runner_cast_label.Run(stream);
|
||||||
|
|
||||||
|
// equal
|
||||||
|
Tensor tmp_equal(label->type());
|
||||||
|
tmp_equal.Resize(label->dims());
|
||||||
|
tmp_equal.mutable_data<bool>(ctx.GetPlace());
|
||||||
|
auto runner_equal =
|
||||||
|
NpuOpRunner("Equal", {tmp_pred, tmp_label}, {tmp_equal}, {});
|
||||||
|
runner_equal.Run(stream);
|
||||||
|
|
||||||
|
// cast equal
|
||||||
|
Tensor tmp_equal_cast(label->type());
|
||||||
|
tmp_equal_cast.Resize(label->dims());
|
||||||
|
tmp_equal_cast.mutable_data<float>(ctx.GetPlace());
|
||||||
|
auto runner_cast_equal =
|
||||||
|
NpuOpRunner("Cast", {tmp_equal}, {tmp_equal_cast},
|
||||||
|
{{"dst_type", static_cast<float>(ACL_FLOAT)}});
|
||||||
|
runner_cast_equal.Run(stream);
|
||||||
|
|
||||||
|
// acc
|
||||||
|
acc->mutable_data<float>(ctx.GetPlace());
|
||||||
|
std::vector<int> axes_vec_1;
|
||||||
|
auto runner_acc = NpuOpRunner("ReduceMeanD", {tmp_equal_cast}, {*acc},
|
||||||
|
{{"keep_dims", false}, {"axes", axes_vec_1}});
|
||||||
|
runner_acc.Run(stream);
|
||||||
|
|
||||||
|
// correct
|
||||||
|
correct->mutable_data<float>(ctx.GetPlace());
|
||||||
|
std::vector<int> axes_vec_2;
|
||||||
|
auto runner_correct =
|
||||||
|
NpuOpRunner("ReduceSumD", {tmp_equal_cast}, {*correct},
|
||||||
|
{{"keep_dims", false}, {"axes", axes_vec_2}});
|
||||||
|
runner_correct.Run(stream);
|
||||||
|
|
||||||
|
// ones_tensor
|
||||||
|
Tensor ones_tensor(label->type());
|
||||||
|
ones_tensor.Resize(label->dims());
|
||||||
|
ones_tensor.mutable_data<int>(ctx.GetPlace());
|
||||||
|
auto runner_oneslike =
|
||||||
|
NpuOpRunner("OnesLike", {tmp_label}, {ones_tensor}, {});
|
||||||
|
runner_oneslike.Run(stream);
|
||||||
|
|
||||||
|
// ones_tensor_cast
|
||||||
|
Tensor ones_tensor_cast(label->type());
|
||||||
|
ones_tensor_cast.Resize(label->dims());
|
||||||
|
ones_tensor_cast.mutable_data<float>(ctx.GetPlace());
|
||||||
|
auto runner_ones_cast =
|
||||||
|
NpuOpRunner("Cast", {ones_tensor}, {ones_tensor_cast},
|
||||||
|
{{"dst_type", static_cast<float>(ACL_FLOAT)}});
|
||||||
|
runner_ones_cast.Run(stream);
|
||||||
|
|
||||||
|
// total
|
||||||
|
total->mutable_data<float>(ctx.GetPlace());
|
||||||
|
std::vector<int> axes_vec_3;
|
||||||
|
auto runner_total =
|
||||||
|
NpuOpRunner("ReduceSumD", {ones_tensor_cast}, {*total},
|
||||||
|
{{"keep_dims", false}, {"axes", axes_vec_3}});
|
||||||
|
runner_total.Run(stream);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_NPU_KERNEL(
|
||||||
|
accuracy, ops::AccuracyNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||||
|
ops::AccuracyNPUKernel<paddle::platform::NPUDeviceContext, int>,
|
||||||
|
ops::AccuracyNPUKernel<paddle::platform::NPUDeviceContext, int64_t>);
|
||||||
|
#endif
|
||||||
@ -0,0 +1,122 @@
|
|||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import unittest
|
||||||
|
import sys
|
||||||
|
sys.path.append("..")
|
||||||
|
from op_test import OpTest
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
|
||||||
|
paddle.enable_static()
|
||||||
|
|
||||||
|
SEED = 2021
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||||
|
"core is not compiled with NPU")
|
||||||
|
class TestAccuracy(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "accuracy"
|
||||||
|
self.set_npu()
|
||||||
|
self.init_dtype()
|
||||||
|
np.random.seed(SEED)
|
||||||
|
pred = np.random.uniform(1, 2, [11, 1]).astype(self.dtype)
|
||||||
|
label = pred.copy()
|
||||||
|
accuracy = np.array([1]).astype(self.dtype)
|
||||||
|
correct = np.array([11 * 1]).astype(self.dtype)
|
||||||
|
total = np.array([11 * 1]).astype(self.dtype)
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
"Out": OpTest.np_dtype_to_fluid_dtype(pred),
|
||||||
|
"Label": OpTest.np_dtype_to_fluid_dtype(label),
|
||||||
|
"Indices": OpTest.np_dtype_to_fluid_dtype(pred)
|
||||||
|
}
|
||||||
|
self.outputs = {
|
||||||
|
"Accuracy": accuracy,
|
||||||
|
"Correct": correct,
|
||||||
|
"Total": total
|
||||||
|
}
|
||||||
|
|
||||||
|
def set_npu(self):
|
||||||
|
self.__class__.use_npu = True
|
||||||
|
self.place = paddle.NPUPlace(0)
|
||||||
|
|
||||||
|
def init_dtype(self):
|
||||||
|
self.dtype = np.float32
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output_with_place(self.place, check_dygraph=False)
|
||||||
|
|
||||||
|
|
||||||
|
class TestAccuracy2(TestAccuracy):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "accuracy"
|
||||||
|
self.set_npu()
|
||||||
|
self.init_dtype()
|
||||||
|
np.random.seed(SEED)
|
||||||
|
pred = np.random.uniform(1, 2, [11, 1]).astype(self.dtype)
|
||||||
|
label = np.random.uniform(4, 5, [11, 1]).astype(self.dtype)
|
||||||
|
accuracy = np.array([0]).astype(self.dtype)
|
||||||
|
correct = np.array([11 * 0]).astype(self.dtype)
|
||||||
|
total = np.array([11 * 1]).astype(self.dtype)
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
"Out": OpTest.np_dtype_to_fluid_dtype(pred),
|
||||||
|
"Label": OpTest.np_dtype_to_fluid_dtype(label),
|
||||||
|
"Indices": OpTest.np_dtype_to_fluid_dtype(pred)
|
||||||
|
}
|
||||||
|
self.outputs = {
|
||||||
|
"Accuracy": accuracy,
|
||||||
|
"Correct": correct,
|
||||||
|
"Total": total
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestAccuracy3(TestAccuracy):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "accuracy"
|
||||||
|
self.set_npu()
|
||||||
|
self.init_dtype()
|
||||||
|
np.random.seed(SEED)
|
||||||
|
a = np.random.randint(1, 2, [5, 1])
|
||||||
|
b = np.random.randint(0, 1, [5, 1])
|
||||||
|
pred = np.row_stack((a, b)).astype(self.dtype)
|
||||||
|
label = np.random.randint(1, 2, [10, 1]).astype(self.dtype)
|
||||||
|
accuracy = np.array([0.5]).astype(self.dtype)
|
||||||
|
correct = np.array([5]).astype(self.dtype)
|
||||||
|
total = np.array([10 * 1]).astype(self.dtype)
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
"Out": OpTest.np_dtype_to_fluid_dtype(pred),
|
||||||
|
"Label": OpTest.np_dtype_to_fluid_dtype(label),
|
||||||
|
"Indices": OpTest.np_dtype_to_fluid_dtype(pred)
|
||||||
|
}
|
||||||
|
self.outputs = {
|
||||||
|
"Accuracy": accuracy,
|
||||||
|
"Correct": correct,
|
||||||
|
"Total": total
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestAccuracyInt(TestAccuracy):
|
||||||
|
def init_dtype(self):
|
||||||
|
self.dtype = np.int
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
||||||
Loading…
Reference in new issue