bugfix: RNN does not initialize the state for the cell correctly (#27644)
1. fix a bug that paddle.nn.RNN does not initialize the state for the cell correctly; 2. add unittest for paddle.nn.RNN and paddle.nn.BiRNNmy_2.0rc
parent
5e4f01f5ef
commit
e1f8617ee2
@ -0,0 +1,193 @@
|
|||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
paddle.set_default_dtype("float64")
|
||||||
|
from paddle.fluid.layers import sequence_mask
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
from convert import convert_params_for_cell
|
||||||
|
from rnn_numpy import GRUCell, RNN, BiRNN
|
||||||
|
|
||||||
|
|
||||||
|
class TestRNNWrapper(unittest.TestCase):
|
||||||
|
def __init__(self, time_major=True, direction="forward", place="cpu"):
|
||||||
|
super(TestRNNWrapper, self).__init__("runTest")
|
||||||
|
self.time_major = time_major
|
||||||
|
self.direction = direction
|
||||||
|
self.place = paddle.CPUPlace() if place == "cpu" \
|
||||||
|
else paddle.CUDAPlace(0)
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
paddle.disable_static(self.place)
|
||||||
|
cell1 = GRUCell(16, 32)
|
||||||
|
cell2 = paddle.nn.GRUCell(16, 32)
|
||||||
|
convert_params_for_cell(cell1, cell2)
|
||||||
|
rnn1 = RNN(cell1,
|
||||||
|
is_reverse=self.direction == "backward",
|
||||||
|
time_major=self.time_major)
|
||||||
|
rnn2 = paddle.nn.RNN(cell2,
|
||||||
|
is_reverse=self.direction == "backward",
|
||||||
|
time_major=self.time_major)
|
||||||
|
|
||||||
|
self.rnn1 = rnn1
|
||||||
|
self.rnn2 = rnn2
|
||||||
|
|
||||||
|
def test_with_initial_state(self):
|
||||||
|
rnn1 = self.rnn1
|
||||||
|
rnn2 = self.rnn2
|
||||||
|
|
||||||
|
x = np.random.randn(12, 4, 16)
|
||||||
|
if not self.time_major:
|
||||||
|
x = np.transpose(x, [1, 0, 2])
|
||||||
|
prev_h = np.random.randn(4, 32)
|
||||||
|
|
||||||
|
y1, h1 = rnn1(x, prev_h)
|
||||||
|
y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
|
||||||
|
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
|
||||||
|
def test_with_zero_state(self):
|
||||||
|
rnn1 = self.rnn1
|
||||||
|
rnn2 = self.rnn2
|
||||||
|
|
||||||
|
x = np.random.randn(12, 4, 16)
|
||||||
|
if not self.time_major:
|
||||||
|
x = np.transpose(x, [1, 0, 2])
|
||||||
|
|
||||||
|
y1, h1 = rnn1(x)
|
||||||
|
y2, h2 = rnn2(paddle.to_tensor(x))
|
||||||
|
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
|
||||||
|
def test_with_input_lengths(self):
|
||||||
|
rnn1 = self.rnn1
|
||||||
|
rnn2 = self.rnn2
|
||||||
|
|
||||||
|
x = np.random.randn(12, 4, 16)
|
||||||
|
if not self.time_major:
|
||||||
|
x = np.transpose(x, [1, 0, 2])
|
||||||
|
sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)
|
||||||
|
|
||||||
|
y1, h1 = rnn1(x, sequence_length=sequence_length)
|
||||||
|
|
||||||
|
seq_len = paddle.to_tensor(sequence_length)
|
||||||
|
mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
|
||||||
|
if self.time_major:
|
||||||
|
mask = paddle.transpose(mask, [1, 0])
|
||||||
|
y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
|
||||||
|
y2 = paddle.multiply(y2, mask, axis=0)
|
||||||
|
|
||||||
|
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
|
||||||
|
def runTest(self):
|
||||||
|
self.test_with_initial_state()
|
||||||
|
self.test_with_zero_state()
|
||||||
|
self.test_with_input_lengths()
|
||||||
|
|
||||||
|
|
||||||
|
class TestBiRNNWrapper(unittest.TestCase):
|
||||||
|
def __init__(self, time_major=True, place="cpu"):
|
||||||
|
super(TestBiRNNWrapper, self).__init__("runTest")
|
||||||
|
self.time_major = time_major
|
||||||
|
self.place = paddle.CPUPlace() if place == "cpu" \
|
||||||
|
else paddle.CUDAPlace(0)
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
paddle.disable_static(self.place)
|
||||||
|
fw_cell1 = GRUCell(16, 32)
|
||||||
|
bw_cell1 = GRUCell(16, 32)
|
||||||
|
fw_cell2 = paddle.nn.GRUCell(16, 32)
|
||||||
|
bw_cell2 = paddle.nn.GRUCell(16, 32)
|
||||||
|
convert_params_for_cell(fw_cell1, fw_cell2)
|
||||||
|
convert_params_for_cell(bw_cell1, bw_cell2)
|
||||||
|
rnn1 = BiRNN(fw_cell1, bw_cell1, time_major=self.time_major)
|
||||||
|
rnn2 = paddle.nn.BiRNN(fw_cell2, bw_cell2, time_major=self.time_major)
|
||||||
|
|
||||||
|
self.rnn1 = rnn1
|
||||||
|
self.rnn2 = rnn2
|
||||||
|
|
||||||
|
def test_with_initial_state(self):
|
||||||
|
rnn1 = self.rnn1
|
||||||
|
rnn2 = self.rnn2
|
||||||
|
|
||||||
|
x = np.random.randn(12, 4, 16)
|
||||||
|
if not self.time_major:
|
||||||
|
x = np.transpose(x, [1, 0, 2])
|
||||||
|
fw_prev_h = np.random.randn(4, 32)
|
||||||
|
bw_prev_h = np.random.randn(4, 32)
|
||||||
|
|
||||||
|
y1, (fw_h1, bw_h1) = rnn1(x, (fw_prev_h, bw_prev_h))
|
||||||
|
y2, (fw_h2, bw_h2) = rnn2(
|
||||||
|
paddle.to_tensor(x),
|
||||||
|
(paddle.to_tensor(fw_prev_h), paddle.to_tensor(bw_prev_h)))
|
||||||
|
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
|
||||||
|
def test_with_zero_state(self):
|
||||||
|
rnn1 = self.rnn1
|
||||||
|
rnn2 = self.rnn2
|
||||||
|
|
||||||
|
x = np.random.randn(12, 4, 16)
|
||||||
|
if not self.time_major:
|
||||||
|
x = np.transpose(x, [1, 0, 2])
|
||||||
|
|
||||||
|
y1, (fw_h1, bw_h1) = rnn1(x)
|
||||||
|
y2, (fw_h2, bw_h2) = rnn2(paddle.to_tensor(x))
|
||||||
|
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
|
||||||
|
def test_with_input_lengths(self):
|
||||||
|
rnn1 = self.rnn1
|
||||||
|
rnn2 = self.rnn2
|
||||||
|
|
||||||
|
x = np.random.randn(12, 4, 16)
|
||||||
|
if not self.time_major:
|
||||||
|
x = np.transpose(x, [1, 0, 2])
|
||||||
|
sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)
|
||||||
|
|
||||||
|
y1, (fw_h1, bw_h1) = rnn1(x, sequence_length=sequence_length)
|
||||||
|
|
||||||
|
seq_len = paddle.to_tensor(sequence_length)
|
||||||
|
mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
|
||||||
|
if self.time_major:
|
||||||
|
mask = paddle.transpose(mask, [1, 0])
|
||||||
|
y2, (fw_h2, bw_h2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
|
||||||
|
y2 = paddle.multiply(y2, mask, axis=0)
|
||||||
|
|
||||||
|
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)
|
||||||
|
|
||||||
|
def runTest(self):
|
||||||
|
self.test_with_initial_state()
|
||||||
|
self.test_with_zero_state()
|
||||||
|
self.test_with_input_lengths()
|
||||||
|
|
||||||
|
|
||||||
|
def load_tests(loader, tests, pattern):
|
||||||
|
suite = unittest.TestSuite()
|
||||||
|
devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
|
||||||
|
else ["cpu"]
|
||||||
|
for direction in ["forward", "backward"]:
|
||||||
|
for device in devices:
|
||||||
|
for time_major in [False]:
|
||||||
|
suite.addTest(TestRNNWrapper(time_major, direction, device))
|
||||||
|
suite.addTest(TestBiRNNWrapper(time_major, device))
|
||||||
|
return suite
|
Loading…
Reference in new issue