Mnist demo (#162)
* added mnist demo * modified .gitignore for .project files * normalize pixel in mnist_provider.py and set use_gpu=0avx_docs
parent
6f0d634e02
commit
e26f220df8
@ -0,0 +1,6 @@
|
|||||||
|
data/raw_data
|
||||||
|
data/*.list
|
||||||
|
mnist_vgg_model
|
||||||
|
plot.png
|
||||||
|
train.log
|
||||||
|
*pyc
|
@ -0,0 +1,21 @@
|
|||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
o = open("./" + "train.list", "w")
|
||||||
|
o.write("./data/raw_data/train" +"\n")
|
||||||
|
o.close()
|
||||||
|
|
||||||
|
o = open("./" + "test.list", "w")
|
||||||
|
o.write("./data/raw_data/t10k" +"\n")
|
||||||
|
o.close()
|
@ -0,0 +1,22 @@
|
|||||||
|
#!/usr/bin/env sh
|
||||||
|
# This scripts downloads the mnist data and unzips it.
|
||||||
|
|
||||||
|
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||||
|
rm -rf "$DIR/raw_data"
|
||||||
|
mkdir "$DIR/raw_data"
|
||||||
|
cd "$DIR/raw_data"
|
||||||
|
|
||||||
|
echo "Downloading..."
|
||||||
|
|
||||||
|
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
|
||||||
|
do
|
||||||
|
if [ ! -e $fname ]; then
|
||||||
|
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
|
||||||
|
gunzip ${fname}.gz
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
|
||||||
|
cd $DIR
|
||||||
|
rm -f *.list
|
||||||
|
python generate_list.py
|
||||||
|
|
@ -0,0 +1,33 @@
|
|||||||
|
from paddle.trainer.PyDataProvider2 import *
|
||||||
|
|
||||||
|
|
||||||
|
# Define a py data provider
|
||||||
|
@provider(input_types=[
|
||||||
|
dense_vector(28 * 28),
|
||||||
|
integer_value(10)
|
||||||
|
])
|
||||||
|
def process(settings, filename): # settings is not used currently.
|
||||||
|
imgf = filename + "-images-idx3-ubyte"
|
||||||
|
labelf = filename + "-labels-idx1-ubyte"
|
||||||
|
f = open(imgf, "rb")
|
||||||
|
l = open(labelf, "rb")
|
||||||
|
|
||||||
|
f.read(16)
|
||||||
|
l.read(8)
|
||||||
|
|
||||||
|
# Define number of samples for train/test
|
||||||
|
if "train" in filename:
|
||||||
|
n = 60000
|
||||||
|
else:
|
||||||
|
n = 10000
|
||||||
|
|
||||||
|
for i in range(n):
|
||||||
|
label = ord(l.read(1))
|
||||||
|
pixels = []
|
||||||
|
for j in range(28*28):
|
||||||
|
pixels.append(float(ord(f.read(1))) / 255.0)
|
||||||
|
yield { "pixel": pixels, 'label': label }
|
||||||
|
|
||||||
|
f.close()
|
||||||
|
l.close()
|
||||||
|
|
@ -0,0 +1,31 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
set -e
|
||||||
|
config=vgg_16_mnist.py
|
||||||
|
output=./mnist_vgg_model
|
||||||
|
log=train.log
|
||||||
|
|
||||||
|
paddle train \
|
||||||
|
--config=$config \
|
||||||
|
--dot_period=10 \
|
||||||
|
--log_period=100 \
|
||||||
|
--test_all_data_in_one_period=1 \
|
||||||
|
--use_gpu=0 \
|
||||||
|
--trainer_count=1 \
|
||||||
|
--num_passes=100 \
|
||||||
|
--save_dir=$output \
|
||||||
|
2>&1 | tee $log
|
||||||
|
|
||||||
|
python -m paddle.utils.plotcurve -i $log > plot.png
|
@ -0,0 +1,52 @@
|
|||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
is_predict = get_config_arg("is_predict", bool, False)
|
||||||
|
|
||||||
|
####################Data Configuration ##################
|
||||||
|
|
||||||
|
|
||||||
|
if not is_predict:
|
||||||
|
data_dir='./data/'
|
||||||
|
define_py_data_sources2(train_list= data_dir + 'train.list',
|
||||||
|
test_list= data_dir + 'test.list',
|
||||||
|
module='mnist_provider',
|
||||||
|
obj='process')
|
||||||
|
|
||||||
|
######################Algorithm Configuration #############
|
||||||
|
settings(
|
||||||
|
batch_size = 128,
|
||||||
|
learning_rate = 0.1 / 128.0,
|
||||||
|
learning_method = MomentumOptimizer(0.9),
|
||||||
|
regularization = L2Regularization(0.0005 * 128)
|
||||||
|
)
|
||||||
|
|
||||||
|
#######################Network Configuration #############
|
||||||
|
|
||||||
|
data_size=1*28*28
|
||||||
|
label_size=10
|
||||||
|
img = data_layer(name='pixel', size=data_size)
|
||||||
|
|
||||||
|
# small_vgg is predined in trainer_config_helpers.network
|
||||||
|
predict = small_vgg(input_image=img,
|
||||||
|
num_channels=1,
|
||||||
|
num_classes=label_size)
|
||||||
|
|
||||||
|
if not is_predict:
|
||||||
|
lbl = data_layer(name="label", size=label_size)
|
||||||
|
outputs(classification_cost(input=predict, label=lbl))
|
||||||
|
else:
|
||||||
|
outputs(predict)
|
Loading…
Reference in new issue