【API 2.0】Add conv1d API (#26350)
parent
e6675f4f4d
commit
e2b82e0439
@ -0,0 +1,208 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import fluid, nn
|
||||
import paddle.fluid.dygraph as dg
|
||||
import paddle.nn.functional as F
|
||||
import paddle.fluid.initializer as I
|
||||
import unittest
|
||||
|
||||
|
||||
class Conv1dTestCase(unittest.TestCase):
|
||||
def __init__(self,
|
||||
methodName='runTest',
|
||||
batch_size=4,
|
||||
spartial_shape=(16, ),
|
||||
num_channels=6,
|
||||
num_filters=8,
|
||||
filter_size=3,
|
||||
padding=0,
|
||||
padding_mode="zeros",
|
||||
stride=1,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
no_bias=False,
|
||||
dtype="float32",
|
||||
data_format="NCL"):
|
||||
super(Conv1dTestCase, self).__init__(methodName)
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
self.num_filters = num_filters
|
||||
self.spartial_shape = spartial_shape
|
||||
self.filter_size = filter_size
|
||||
self.data_format = data_format
|
||||
self.channel_last = (self.data_format == "NHWC")
|
||||
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.groups = groups
|
||||
self.no_bias = no_bias
|
||||
self.dtype = dtype
|
||||
|
||||
def setUp(self):
|
||||
input_shape = (self.batch_size, self.num_channels
|
||||
) + self.spartial_shape if not self.channel_last else (
|
||||
self.batch_size, ) + self.spartial_shape + (
|
||||
self.num_channels, )
|
||||
self.input = np.random.randn(*input_shape).astype(self.dtype)
|
||||
|
||||
if isinstance(self.filter_size, int):
|
||||
filter_size = [self.filter_size]
|
||||
else:
|
||||
filter_size = self.filter_size
|
||||
self.weight_shape = weight_shape = (self.num_filters, self.num_channels
|
||||
// self.groups) + tuple(filter_size)
|
||||
self.weight = np.random.uniform(
|
||||
-1, 1, size=weight_shape).astype(self.dtype)
|
||||
if not self.no_bias:
|
||||
self.bias = np.random.uniform(
|
||||
-1, 1, size=(self.num_filters, )).astype(self.dtype)
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def functional(self, place):
|
||||
main = fluid.Program()
|
||||
start = fluid.Program()
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.program_guard(main, start):
|
||||
input_shape = (-1, self.num_channels,
|
||||
-1) if not self.channel_last else (
|
||||
-1, -1, self.num_channels)
|
||||
x_var = fluid.data("input", input_shape, dtype=self.dtype)
|
||||
w_var = fluid.data(
|
||||
"weight", self.weight_shape, dtype=self.dtype)
|
||||
b_var = fluid.data(
|
||||
"bias", (self.num_filters, ), dtype=self.dtype)
|
||||
y_var = F.conv1d(
|
||||
x_var,
|
||||
w_var,
|
||||
b_var if not self.no_bias else None,
|
||||
padding=self.padding,
|
||||
stride=self.stride,
|
||||
dilation=self.dilation,
|
||||
groups=self.groups,
|
||||
data_format=self.data_format)
|
||||
feed_dict = {"input": self.input, "weight": self.weight}
|
||||
if self.bias is not None:
|
||||
feed_dict["bias"] = self.bias
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(start)
|
||||
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
|
||||
return y_np
|
||||
|
||||
def paddle_nn_layer(self):
|
||||
x_var = paddle.to_tensor(self.input)
|
||||
conv = nn.Conv1d(
|
||||
self.num_channels,
|
||||
self.num_filters,
|
||||
self.filter_size,
|
||||
padding=self.padding,
|
||||
padding_mode=self.padding_mode,
|
||||
stride=self.stride,
|
||||
dilation=self.dilation,
|
||||
groups=self.groups,
|
||||
data_format=self.data_format)
|
||||
conv.weight.set_value(self.weight)
|
||||
if not self.no_bias:
|
||||
conv.bias.set_value(self.bias)
|
||||
y_var = conv(x_var)
|
||||
y_np = y_var.numpy()
|
||||
return y_np
|
||||
|
||||
def _test_equivalence(self, place):
|
||||
result1 = self.functional(place)
|
||||
with dg.guard(place):
|
||||
result2 = self.paddle_nn_layer()
|
||||
np.testing.assert_array_almost_equal(result1, result2)
|
||||
|
||||
def runTest(self):
|
||||
place = fluid.CPUPlace()
|
||||
self._test_equivalence(place)
|
||||
|
||||
if fluid.core.is_compiled_with_cuda():
|
||||
place = fluid.CUDAPlace(0)
|
||||
self._test_equivalence(place)
|
||||
|
||||
|
||||
class Conv1dErrorTestCase(Conv1dTestCase):
|
||||
def runTest(self):
|
||||
place = fluid.CPUPlace()
|
||||
with dg.guard(place):
|
||||
with self.assertRaises(ValueError):
|
||||
self.paddle_nn_layer()
|
||||
|
||||
|
||||
def add_cases(suite):
|
||||
suite.addTest(Conv1dTestCase(methodName='runTest'))
|
||||
suite.addTest(Conv1dTestCase(methodName='runTest', stride=[1], dilation=2))
|
||||
suite.addTest(Conv1dTestCase(methodName='runTest', stride=2, dilation=(1)))
|
||||
suite.addTest(
|
||||
Conv1dTestCase(
|
||||
methodName='runTest', padding="same", no_bias=True))
|
||||
suite.addTest(
|
||||
Conv1dTestCase(
|
||||
methodName='runTest', filter_size=3, padding='valid'))
|
||||
suite.addTest(
|
||||
Conv1dTestCase(
|
||||
methodName='runTest', padding=2, data_format='NLC'))
|
||||
suite.addTest(Conv1dTestCase(methodName='runTest', padding=[1]))
|
||||
suite.addTest(Conv1dTestCase(methodName='runTest', padding=2))
|
||||
suite.addTest(Conv1dTestCase(methodName='runTest'))
|
||||
suite.addTest(
|
||||
Conv1dTestCase(
|
||||
methodName='runTest', groups=2, padding="valid"))
|
||||
suite.addTest(
|
||||
Conv1dTestCase(
|
||||
methodName='runTest',
|
||||
num_filters=6,
|
||||
num_channels=3,
|
||||
groups=3,
|
||||
padding="valid",
|
||||
data_format='NLC'))
|
||||
|
||||
|
||||
def add_error_cases(suite):
|
||||
suite.addTest(
|
||||
Conv1dErrorTestCase(
|
||||
methodName='runTest', padding_mode="reflect", padding="valid"))
|
||||
suite.addTest(
|
||||
Conv1dErrorTestCase(
|
||||
methodName='runTest', data_format="VALID"))
|
||||
suite.addTest(
|
||||
Conv1dErrorTestCase(
|
||||
methodName='runTest', padding_mode="VALID"))
|
||||
suite.addTest(
|
||||
Conv1dErrorTestCase(
|
||||
methodName='runTest', num_channels=5, groups=2))
|
||||
suite.addTest(
|
||||
Conv1dErrorTestCase(
|
||||
methodName='runTest', num_filters=8, num_channels=15, groups=3))
|
||||
suite.addTest(
|
||||
Conv1dErrorTestCase(
|
||||
methodName='runTest', padding=[1, 2, 3, 4, 5]))
|
||||
|
||||
|
||||
def load_tests(loader, standard_tests, pattern):
|
||||
suite = unittest.TestSuite()
|
||||
add_cases(suite)
|
||||
add_error_cases(suite)
|
||||
return suite
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue