| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -144,6 +144,9 @@ void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  cfg->SwitchSpecifyInputNames();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  cfg->SwitchIrDebug();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  if (FLAGS_zero_copy) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    cfg->SwitchUseFeedFetchOps(false);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  if (use_mkldnn) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    cfg->EnableMKLDNN();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -184,10 +187,10 @@ TEST(Analyzer_seq_pool1, compare_determine) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					                       input_slots_all);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					}
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					void analysis_fuse_statis(bool use_zerocopy) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					// Check the fuse status
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					TEST(Analyzer_seq_pool1, fuse_statis) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  AnalysisConfig cfg;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  SetConfig(&cfg);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  cfg.SwitchUseFeedFetchOps(!use_zerocopy);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  int num_ops;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -203,137 +206,17 @@ void analysis_fuse_statis(bool use_zerocopy) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  EXPECT_EQ(num_ops, 171);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					}
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					// Check the fuse status
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					TEST(Analyzer_seq_pool1, fuse_statis) { analysis_fuse_statis(false); }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					void PrepareZeroCopyInputs(
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    const std::unique_ptr<PaddlePredictor> &predictor,
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    std::vector<std::unique_ptr<ZeroCopyTensor>> *inputs) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  // only feed one batch
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  const auto &one_batch = data.NextBatch();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  inputs->clear();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  for (size_t i = 0; i < one_batch.size(); ++i) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    auto &slot = one_batch[i];
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    auto tensor = predictor->GetInputTensor(slot.name + "_embed");
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    tensor->Reshape(slot.shape);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    tensor->SetLoD({slot.lod});
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ZeroCopyTensorAssignData<float>(tensor.get(), slot.data);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    inputs->emplace_back(std::move(tensor));
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					}
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					// return the output values
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					std::vector<float> zerocopy_profile(int repeat_times) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  AnalysisConfig config;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  SetConfig(&config);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  config.SwitchUseFeedFetchOps(false);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  PrepareZeroCopyInputs(predictor, &inputs);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  auto output_tensor = predictor->GetOutputTensor(out_var_name);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  Timer timer;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  LOG(INFO) << "Warm up run...";
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  timer.tic();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  predictor->ZeroCopyRun();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  PrintTime(FLAGS_batch_size, 1, 1, 0, timer.toc(), 1);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  if (FLAGS_profile) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    paddle::platform::ResetProfiler();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  LOG(INFO) << "Run " << repeat_times << " times...";
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  timer.tic();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  for (int i = 0; i < repeat_times; i++) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    predictor->ZeroCopyRun();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  PrintTime(FLAGS_batch_size, repeat_times, 1, 0, timer.toc() / repeat_times,
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					            1);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  PaddlePlace place;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  int output_size{0};
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  auto *pdata = output_tensor->data<float>(&place, &output_size);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  std::vector<float> res(output_size);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  for (int i = 0; i < output_size; ++i) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    res[i] = pdata[i];
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  return res;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					}
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					TEST(Analyzer_seq_pool1, zerocopy_profile) { zerocopy_profile(FLAGS_repeat); }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					TEST(Analyzer_seq_pool1, zerocopy_profile_threads) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  AnalysisConfig config;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  SetConfig(&config);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  config.SwitchUseFeedFetchOps(false);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  predictors.emplace_back(CreatePaddlePredictor<AnalysisConfig>(config));
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  for (int tid = 1; tid < FLAGS_num_threads; tid++) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    predictors.emplace_back(predictors.front()->Clone());
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  double total_time_of_threads{0};
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  std::vector<std::thread> threads;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  for (int tid = 0; tid < FLAGS_num_threads; tid++) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    threads.emplace_back([&, tid] {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      auto &predictor = predictors[tid];
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      PrepareZeroCopyInputs(predictor, &inputs);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      auto output_tensor = predictor->GetOutputTensor(out_var_name);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      Timer timer;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      double total_time{0};
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      LOG(INFO) << "Warm up run...";
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      timer.tic();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      predictor->ZeroCopyRun();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      PrintTime(FLAGS_batch_size, 1, FLAGS_num_threads, tid, timer.toc(), 1);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      if (FLAGS_profile) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        paddle::platform::ResetProfiler();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      int repeat_times = FLAGS_repeat;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      LOG(INFO) << "Run " << repeat_times << " times...";
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      timer.tic();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      for (int i = 0; i < repeat_times; i++) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        predictor->ZeroCopyRun();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      total_time += timer.toc();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      total_time_of_threads += total_time;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					      LOG(INFO) << "thread time: " << total_time / repeat_times;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    });
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  for (auto &t : threads) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    t.join();
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  LOG(INFO) << "average time: "
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					            << total_time_of_threads / FLAGS_num_threads / FLAGS_repeat;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					}
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					TEST(Analyzer_seq_pool1, zerocopy_fuse_statis) { analysis_fuse_statis(true); }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					TEST(Analyzer_seq_pool1, compare_zero_copy) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  AnalysisConfig cfg;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  SetConfig(&cfg);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					TEST(Analyzer_seq_pool1, zerocopy_compare_native) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  AnalysisConfig config;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  SetConfig(&config);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  config.SwitchUseFeedFetchOps(true);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  auto predictor = CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  std::vector<PaddleTensor> native_outputs;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  std::vector<std::vector<PaddleTensor>> input_slots_all;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  SetInput(&input_slots_all);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  ASSERT_TRUE(predictor->Run(input_slots_all[0], &native_outputs));
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  EXPECT_EQ(native_outputs.size(), 1UL);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  auto zerocopy_output = zerocopy_profile(1);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  EXPECT_EQ(zerocopy_output.size() * sizeof(float),
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					            native_outputs.front().data.length());
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  auto *native_data = static_cast<float *>(native_outputs.front().data.data());
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  for (size_t i = 0; i < zerocopy_output.size(); ++i) {
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    EXPECT_LT(
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        std::fabs((zerocopy_output[i] - native_data[i]) / zerocopy_output[i]),
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        1e-3);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  }
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  std::vector<std::string> outputs_name;
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  outputs_name.emplace_back(out_var_name);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					                             input_slots_all, outputs_name);
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					}
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					}  // namespace analysis
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				 | 
				
					
 
 |