It can be run both CPU/GPU. configure attributes are: * min: the min value of uniform random * max: the max value of uniform random * dims: the dimension of output tensor * seed: the random seed of uniform random. 0 means generate a seed each time.fixstartbug
parent
fd64369f30
commit
e376bda42c
@ -0,0 +1,53 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/uniform_random_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
class RandomOp : public OperatorWithKernel {
|
||||||
|
protected:
|
||||||
|
void InferShape(const InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE(GetAttr<float>("min") < GetAttr<float>("max"),
|
||||||
|
"uniform_random's min must less then max");
|
||||||
|
auto tensor = ctx.Output<Tensor>(0);
|
||||||
|
auto dims = GetAttr<std::vector<int>>("dims");
|
||||||
|
tensor->Resize(framework::make_ddim(dims));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class RandomOpMaker : public OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
RandomOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddOutput("Out", "The output tensor of uniform random op");
|
||||||
|
AddComment(R"DOC(Uniform random operator.
|
||||||
|
|
||||||
|
Used to initialize tensor with uniform random generator.
|
||||||
|
)DOC");
|
||||||
|
AddAttr<std::vector<int>>("dims", "the dimension of random tensor");
|
||||||
|
AddAttr<float>("min", "Minimum value of uniform random").SetDefault(-1.0f);
|
||||||
|
AddAttr<float>("max", "Maximun value of uniform random").SetDefault(1.0f);
|
||||||
|
AddAttr<int>("seed",
|
||||||
|
"Random seed of uniform random. "
|
||||||
|
"0 means generate a seed by system")
|
||||||
|
.SetDefault(0);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
REGISTER_OP(uniform_random, ops::RandomOp, ops::RandomOpMaker);
|
||||||
|
REGISTER_OP_CPU_KERNEL(uniform_random,
|
||||||
|
ops::UniformRandomKernel<ops::CPUPlace, float>);
|
@ -0,0 +1,18 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/uniform_random_op.h"
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(uniform_random,
|
||||||
|
ops::UniformRandomKernel<ops::GPUPlace, float>);
|
@ -0,0 +1,39 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/operators/type_alias.h"
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class UniformRandomKernel : public OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const ExecutionContext &context) const override {
|
||||||
|
auto tensor = context.Output<Tensor>(0);
|
||||||
|
tensor->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
auto eigenTensor = EigenVector<T>::Flatten(*tensor);
|
||||||
|
auto dev = context.GetEigenDevice<Place>();
|
||||||
|
auto min = context.op_.GetAttr<float>("min");
|
||||||
|
auto max = context.op_.GetAttr<float>("max");
|
||||||
|
auto seed = static_cast<uint64_t>(context.op_.GetAttr<int>("seed"));
|
||||||
|
auto diff = max - min;
|
||||||
|
Eigen::internal::UniformRandomGenerator<T> gen(seed);
|
||||||
|
eigenTensor.device(dev) = eigenTensor.random(gen) * diff + min;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,35 @@
|
|||||||
|
import unittest
|
||||||
|
from paddle.v2.framework.op import Operator
|
||||||
|
import paddle.v2.framework.core as core
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
class UniformRandomTest(unittest.TestCase):
|
||||||
|
def test_uniform_random_cpu(self):
|
||||||
|
self.uniform_random_test(place=core.CPUPlace())
|
||||||
|
|
||||||
|
def test_uniform_random_gpu(self):
|
||||||
|
if core.is_compile_gpu():
|
||||||
|
self.uniform_random_test(place=core.GPUPlace(0))
|
||||||
|
|
||||||
|
def uniform_random_test(self, place):
|
||||||
|
scope = core.Scope()
|
||||||
|
scope.new_var("X").get_tensor()
|
||||||
|
|
||||||
|
op = Operator(
|
||||||
|
"uniform_random",
|
||||||
|
Out="X",
|
||||||
|
dims=[1000, 784],
|
||||||
|
min=-5.0,
|
||||||
|
max=10.0,
|
||||||
|
seed=10)
|
||||||
|
|
||||||
|
op.infer_shape(scope)
|
||||||
|
ctx = core.DeviceContext.create(place)
|
||||||
|
op.run(scope, ctx)
|
||||||
|
tensor = numpy.array(scope.find_var("X").get_tensor())
|
||||||
|
self.assertAlmostEqual(tensor.mean(), 2.5, delta=0.1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue