Merge pull request #8874 from jacquesqiao/optimize-optimizer

a little optimize of optimizer
shanyi15-patch-2
chengduo 7 years ago committed by GitHub
commit e4ce4795dc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -92,6 +92,9 @@ class Optimizer(object):
# create learning rate variable for every parameter
param = param_and_grad[0]
param_lr = param.optimize_attr['learning_rate']
if param_lr == 1.0:
return self.global_learning_rate()
else:
return self.global_learning_rate() * param_lr
def _create_accumulators(self, block, parameters):

@ -21,11 +21,16 @@ from paddle.fluid.backward import append_backward
class TestOptimizer(unittest.TestCase):
def test_sgd_optimizer(self):
def check_sgd_optimizer(optimizer_attr):
init_program = framework.Program()
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
dtype="float32",
shape=[5, 10],
lod_level=0,
name="mul.x",
optimize_attr=optimizer_attr)
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
@ -42,10 +47,17 @@ class TestOptimizer(unittest.TestCase):
type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
opts, _ = sgd_optimizer.minimize(mean_out, init_program)
return opts
opts = check_sgd_optimizer({'learning_rate': 1.1})
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "sgd"])
opts = check_sgd_optimizer({'learning_rate': 1.0})
self.assertEqual(len(opts), 1)
self.assertEqual([op.type for op in opts], ["sgd"])
class TestMomentumOptimizer(unittest.TestCase):
class MockMomentum(optimizer.MomentumOptimizer):
@ -60,7 +72,11 @@ class TestMomentumOptimizer(unittest.TestCase):
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
dtype="float32",
shape=[5, 10],
lod_level=0,
name="mul.x",
optimize_attr={'learning_rate': 1.1})
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
@ -110,7 +126,11 @@ class TestMomentumOptimizer(unittest.TestCase):
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
dtype="float32",
shape=[5, 10],
lod_level=0,
name="mul.x",
optimize_attr={'learning_rate': 1.1})
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
@ -169,7 +189,11 @@ class TestAdagradOptimizer(unittest.TestCase):
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
dtype="float32",
shape=[5, 10],
lod_level=0,
name="mul.x",
optimize_attr={'learning_rate': 1.1})
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
@ -229,7 +253,11 @@ class TestAdamOptimizer(unittest.TestCase):
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
dtype="float32",
shape=[5, 10],
lod_level=0,
name="mul.x",
optimize_attr={'learning_rate': 1.1})
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
@ -292,7 +320,11 @@ class TestAdamaxOptimizer(unittest.TestCase):
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
dtype="float32",
shape=[5, 10],
lod_level=0,
name="mul.x",
optimize_attr={'learning_rate': 1.1})
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
@ -352,7 +384,11 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
dtype="float32",
shape=[5, 10],
lod_level=0,
name="mul.x",
optimize_attr={'learning_rate': 1.1})
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(

Loading…
Cancel
Save