parent
0ab012cf7f
commit
e5c167dc0b
@ -1,144 +0,0 @@
|
|||||||
import unittest
|
|
||||||
import numpy as np
|
|
||||||
from op_test import OpTest
|
|
||||||
|
|
||||||
|
|
||||||
def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
|
|
||||||
|
|
||||||
N, C, H, W = x.shape
|
|
||||||
if global_pool == 1:
|
|
||||||
ksize = [H, W]
|
|
||||||
H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
|
|
||||||
W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
|
||||||
out = np.zeros((N, C, H_out, W_out))
|
|
||||||
for i in xrange(H_out):
|
|
||||||
for j in xrange(W_out):
|
|
||||||
r_start = np.max((i * strides[0] - paddings[0], 0))
|
|
||||||
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
|
|
||||||
c_start = np.max((j * strides[1] - paddings[1], 0))
|
|
||||||
c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
|
|
||||||
x_masked = x[:, :, r_start:r_end, c_start:c_end]
|
|
||||||
|
|
||||||
out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
def avg_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
|
|
||||||
|
|
||||||
N, C, H, W = x.shape
|
|
||||||
if global_pool == 1:
|
|
||||||
ksize = [H, W]
|
|
||||||
H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
|
|
||||||
W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
|
||||||
out = np.zeros((N, C, H_out, W_out))
|
|
||||||
for i in xrange(H_out):
|
|
||||||
for j in xrange(W_out):
|
|
||||||
r_start = np.max((i * strides[0] - paddings[0], 0))
|
|
||||||
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
|
|
||||||
c_start = np.max((j * strides[1] - paddings[1], 0))
|
|
||||||
c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
|
|
||||||
x_masked = x[:, :, r_start:r_end, c_start:c_end]
|
|
||||||
|
|
||||||
out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / (
|
|
||||||
(r_end - r_start) * (c_end - c_start))
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
class TestPool2d_cudnn_Op(OpTest):
|
|
||||||
def setUp(self):
|
|
||||||
self.initTestCase()
|
|
||||||
input = np.random.random(self.shape).astype("float32")
|
|
||||||
output = self.pool2D_forward_naive(input, self.ksize, self.strides,
|
|
||||||
self.paddings, self.global_pool)
|
|
||||||
self.inputs = {'X': input}
|
|
||||||
|
|
||||||
self.attrs = {
|
|
||||||
'strides': self.strides,
|
|
||||||
'paddings': self.paddings,
|
|
||||||
'ksize': self.ksize,
|
|
||||||
'poolingType': self.pool_type,
|
|
||||||
'globalPooling': self.global_pool,
|
|
||||||
}
|
|
||||||
|
|
||||||
self.outputs = {'Out': output}
|
|
||||||
|
|
||||||
def test_check_output(self):
|
|
||||||
self.check_output()
|
|
||||||
|
|
||||||
def test_check_grad(self):
|
|
||||||
if self.pool_type != "max":
|
|
||||||
self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
|
|
||||||
|
|
||||||
def initTestCase(self):
|
|
||||||
self.global_pool = True
|
|
||||||
self.op_type = "pool2d_cudnn"
|
|
||||||
self.pool_type = "avg"
|
|
||||||
self.pool2D_forward_naive = avg_pool2D_forward_naive
|
|
||||||
self.shape = [2, 3, 5, 5]
|
|
||||||
self.ksize = [3, 3]
|
|
||||||
self.strides = [1, 1]
|
|
||||||
self.paddings = [0, 0]
|
|
||||||
|
|
||||||
|
|
||||||
class TestCase1(TestPool2d_cudnn_Op):
|
|
||||||
def initTestCase(self):
|
|
||||||
self.global_pool = False
|
|
||||||
self.op_type = "pool2d_cudnn"
|
|
||||||
self.pool_type = "avg"
|
|
||||||
self.pool2D_forward_naive = avg_pool2D_forward_naive
|
|
||||||
self.shape = [2, 3, 7, 7]
|
|
||||||
self.ksize = [3, 3]
|
|
||||||
self.strides = [1, 1]
|
|
||||||
self.paddings = [0, 0]
|
|
||||||
|
|
||||||
|
|
||||||
class TestCase2(TestPool2d_cudnn_Op):
|
|
||||||
def initTestCase(self):
|
|
||||||
self.global_pool = False
|
|
||||||
self.op_type = "pool2d_cudnn"
|
|
||||||
self.pool_type = "avg"
|
|
||||||
self.pool2D_forward_naive = avg_pool2D_forward_naive
|
|
||||||
self.shape = [2, 3, 7, 7]
|
|
||||||
self.ksize = [3, 3]
|
|
||||||
self.strides = [1, 1]
|
|
||||||
self.paddings = [1, 1]
|
|
||||||
|
|
||||||
|
|
||||||
class TestCase3(TestPool2d_cudnn_Op):
|
|
||||||
def initTestCase(self):
|
|
||||||
self.global_pool = True
|
|
||||||
self.op_type = "pool2d_cudnn"
|
|
||||||
self.pool_type = "max"
|
|
||||||
self.pool2D_forward_naive = max_pool2D_forward_naive
|
|
||||||
self.shape = [2, 3, 5, 5]
|
|
||||||
self.ksize = [3, 3]
|
|
||||||
self.strides = [1, 1]
|
|
||||||
self.paddings = [0, 0]
|
|
||||||
|
|
||||||
|
|
||||||
class TestCase4(TestPool2d_cudnn_Op):
|
|
||||||
def initTestCase(self):
|
|
||||||
self.global_pool = False
|
|
||||||
self.op_type = "pool2d_cudnn"
|
|
||||||
self.pool_type = "max"
|
|
||||||
self.pool2D_forward_naive = max_pool2D_forward_naive
|
|
||||||
self.shape = [2, 3, 7, 7]
|
|
||||||
self.ksize = [3, 3]
|
|
||||||
self.strides = [1, 1]
|
|
||||||
self.paddings = [0, 0]
|
|
||||||
|
|
||||||
|
|
||||||
class TestCase5(TestPool2d_cudnn_Op):
|
|
||||||
def initTestCase(self):
|
|
||||||
self.global_pool = False
|
|
||||||
self.op_type = "pool2d_cudnn"
|
|
||||||
self.pool_type = "max"
|
|
||||||
self.pool2D_forward_naive = max_pool2D_forward_naive
|
|
||||||
self.shape = [2, 3, 7, 7]
|
|
||||||
self.ksize = [3, 3]
|
|
||||||
self.strides = [1, 1]
|
|
||||||
self.paddings = [1, 1]
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
unittest.main()
|
|
Loading…
Reference in new issue