normal: support mean and std tensor; randn = standard_normal (#26367)
parent
3a9417f4f7
commit
e6675f4f4d
@ -0,0 +1,197 @@
|
|||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
import paddle
|
||||||
|
import copy
|
||||||
|
|
||||||
|
np.random.seed(10)
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalAPI(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
self.mean = 1.0
|
||||||
|
self.std = 0.0
|
||||||
|
self.shape = None
|
||||||
|
self.repeat_num = 1000
|
||||||
|
self.set_attrs()
|
||||||
|
self.dtype = self.get_dtype()
|
||||||
|
self.place=paddle.CUDAPlace(0) \
|
||||||
|
if paddle.fluid.core.is_compiled_with_cuda() \
|
||||||
|
else paddle.CPUPlace()
|
||||||
|
|
||||||
|
def set_attrs(self):
|
||||||
|
self.shape = [8, 12]
|
||||||
|
|
||||||
|
def get_shape(self):
|
||||||
|
if isinstance(self.mean, np.ndarray):
|
||||||
|
shape = self.mean.shape
|
||||||
|
elif isinstance(self.std, np.ndarray):
|
||||||
|
shape = self.std.shape
|
||||||
|
else:
|
||||||
|
shape = self.shape
|
||||||
|
return list(shape)
|
||||||
|
|
||||||
|
def get_dtype(self):
|
||||||
|
if isinstance(self.mean, np.ndarray):
|
||||||
|
return self.mean.dtype
|
||||||
|
elif isinstance(self.std, np.ndarray):
|
||||||
|
return self.std.dtype
|
||||||
|
else:
|
||||||
|
return 'float32'
|
||||||
|
|
||||||
|
def static_api(self):
|
||||||
|
shape = self.get_shape()
|
||||||
|
ret_all_shape = copy.deepcopy(shape)
|
||||||
|
ret_all_shape.insert(0, self.repeat_num)
|
||||||
|
ret_all = np.zeros(ret_all_shape, self.dtype)
|
||||||
|
if isinstance(self.mean, np.ndarray) \
|
||||||
|
and isinstance(self.std, np.ndarray):
|
||||||
|
with paddle.static.program_guard(paddle.static.Program()):
|
||||||
|
mean = paddle.data('Mean', self.mean.shape, self.mean.dtype)
|
||||||
|
std = paddle.data('Std', self.std.shape, self.std.dtype)
|
||||||
|
out = paddle.normal(mean, std, self.shape)
|
||||||
|
|
||||||
|
exe = paddle.static.Executor(self.place)
|
||||||
|
for i in range(self.repeat_num):
|
||||||
|
ret = exe.run(feed={
|
||||||
|
'Mean': self.mean,
|
||||||
|
'Std': self.std.reshape(shape)
|
||||||
|
},
|
||||||
|
fetch_list=[out])
|
||||||
|
ret_all[i] = ret[0]
|
||||||
|
return ret_all
|
||||||
|
elif isinstance(self.mean, np.ndarray):
|
||||||
|
with paddle.static.program_guard(paddle.static.Program()):
|
||||||
|
mean = paddle.data('Mean', self.mean.shape, self.mean.dtype)
|
||||||
|
out = paddle.normal(mean, self.std, self.shape)
|
||||||
|
|
||||||
|
exe = paddle.static.Executor(self.place)
|
||||||
|
for i in range(self.repeat_num):
|
||||||
|
ret = exe.run(feed={'Mean': self.mean}, fetch_list=[out])
|
||||||
|
ret_all[i] = ret[0]
|
||||||
|
return ret_all
|
||||||
|
elif isinstance(self.std, np.ndarray):
|
||||||
|
with paddle.static.program_guard(paddle.static.Program()):
|
||||||
|
std = paddle.data('Std', self.std.shape, self.std.dtype)
|
||||||
|
out = paddle.normal(self.mean, std, self.shape)
|
||||||
|
|
||||||
|
exe = paddle.static.Executor(self.place)
|
||||||
|
for i in range(self.repeat_num):
|
||||||
|
ret = exe.run(feed={'Std': self.std}, fetch_list=[out])
|
||||||
|
ret_all[i] = ret[0]
|
||||||
|
return ret_all
|
||||||
|
else:
|
||||||
|
with paddle.static.program_guard(paddle.static.Program()):
|
||||||
|
out = paddle.normal(self.mean, self.std, self.shape)
|
||||||
|
|
||||||
|
exe = paddle.static.Executor(self.place)
|
||||||
|
for i in range(self.repeat_num):
|
||||||
|
ret = exe.run(fetch_list=[out])
|
||||||
|
ret_all[i] = ret[0]
|
||||||
|
return ret_all
|
||||||
|
|
||||||
|
def dygraph_api(self):
|
||||||
|
paddle.disable_static(self.place)
|
||||||
|
shape = self.get_shape()
|
||||||
|
ret_all_shape = copy.deepcopy(shape)
|
||||||
|
ret_all_shape.insert(0, self.repeat_num)
|
||||||
|
ret_all = np.zeros(ret_all_shape, self.dtype)
|
||||||
|
|
||||||
|
mean = paddle.to_tensor(self.mean) \
|
||||||
|
if isinstance(self.mean, np.ndarray) else self.mean
|
||||||
|
std = paddle.to_tensor(self.std) \
|
||||||
|
if isinstance(self.std, np.ndarray) else self.std
|
||||||
|
for i in range(self.repeat_num):
|
||||||
|
out = paddle.normal(mean, std, self.shape)
|
||||||
|
ret_all[i] = out.numpy()
|
||||||
|
paddle.enable_static()
|
||||||
|
return ret_all
|
||||||
|
|
||||||
|
def test_api(self):
|
||||||
|
ret_static = self.static_api()
|
||||||
|
ret_dygraph = self.dygraph_api()
|
||||||
|
for ret in [ret_static, ret_dygraph]:
|
||||||
|
shape_ref = self.get_shape()
|
||||||
|
self.assertEqual(shape_ref, list(ret[0].shape))
|
||||||
|
|
||||||
|
ret = ret.flatten().reshape([self.repeat_num, -1])
|
||||||
|
mean = np.mean(ret, axis=0)
|
||||||
|
std = np.std(ret, axis=0)
|
||||||
|
mean_ref=self.mean.reshape([1, -1]) \
|
||||||
|
if isinstance(self.mean, np.ndarray) else self.mean
|
||||||
|
std_ref=self.std.reshape([1, -1]) \
|
||||||
|
if isinstance(self.std, np.ndarray) else self.std
|
||||||
|
self.assertTrue(np.allclose(mean_ref, mean, 0.1, 0.1))
|
||||||
|
self.assertTrue(np.allclose(std_ref, std, 0.1, 0.1))
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalAPI_mean_is_tensor(TestNormalAPI):
|
||||||
|
def set_attrs(self):
|
||||||
|
self.mean = np.random.uniform(-2, -1, [2, 3, 4, 5]).astype('float64')
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalAPI_std_is_tensor(TestNormalAPI):
|
||||||
|
def set_attrs(self):
|
||||||
|
self.std = np.random.uniform(0.7, 1, [2, 3, 17]).astype('float64')
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalAPI_mean_std_are_tensor(TestNormalAPI):
|
||||||
|
def set_attrs(self):
|
||||||
|
self.mean = np.random.uniform(1, 2, [1, 100]).astype('float64')
|
||||||
|
self.std = np.random.uniform(0.5, 1, [1, 100]).astype('float64')
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalAPI_mean_std_are_tensor_with_different_dtype(TestNormalAPI):
|
||||||
|
def set_attrs(self):
|
||||||
|
self.mean = np.random.uniform(1, 2, [100]).astype('float64')
|
||||||
|
self.std = np.random.uniform(1, 2, [100]).astype('float32')
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalAlias(unittest.TestCase):
|
||||||
|
def test_alias(self):
|
||||||
|
paddle.disable_static()
|
||||||
|
shape = [1, 2, 3]
|
||||||
|
out1 = paddle.normal(shape=shape)
|
||||||
|
out2 = paddle.tensor.normal(shape=shape)
|
||||||
|
out3 = paddle.tensor.random.normal(shape=shape)
|
||||||
|
paddle.enable_static()
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalErrors(unittest.TestCase):
|
||||||
|
def test_errors(self):
|
||||||
|
with paddle.static.program_guard(paddle.static.Program()):
|
||||||
|
mean = [1, 2, 3]
|
||||||
|
self.assertRaises(TypeError, paddle.normal, mean)
|
||||||
|
|
||||||
|
std = [1, 2, 3]
|
||||||
|
self.assertRaises(TypeError, paddle.normal, std=std)
|
||||||
|
|
||||||
|
mean = paddle.data('Mean', [100], 'int32')
|
||||||
|
self.assertRaises(TypeError, paddle.normal, mean)
|
||||||
|
|
||||||
|
std = paddle.data('Std', [100], 'int32')
|
||||||
|
self.assertRaises(TypeError, paddle.normal, mean=1.0, std=std)
|
||||||
|
|
||||||
|
self.assertRaises(TypeError, paddle.normal, shape=1)
|
||||||
|
|
||||||
|
self.assertRaises(TypeError, paddle.normal, shape=[1.0])
|
||||||
|
|
||||||
|
shape = paddle.data('Shape', [100], 'float32')
|
||||||
|
self.assertRaises(TypeError, paddle.normal, shape=shape)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue