Follow comments

release/0.10.0
Yu Yang 9 years ago
parent a125ef1abd
commit e7b3a5f1c8

@ -21,7 +21,7 @@ import data_type
import topology import topology
import data_feeder import data_feeder
import networks import networks
import evaluators import evaluator
from . import dataset from . import dataset
from . import reader from . import reader
from . import plot from . import plot
@ -36,7 +36,7 @@ import plot
__all__ = [ __all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer', 'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader', 'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader',
'topology', 'networks', 'infer', 'plot', 'evaluators' 'topology', 'networks', 'infer', 'plot', 'evaluator'
] ]

@ -20,21 +20,28 @@ __all__ = []
def initialize(): def initialize():
def convert_to_new_name(nm):
return nm[:-len("_evaluator")]
for __ev_name__ in filter(lambda x: x.endswith('_evaluator'), evs.__all__): for __ev_name__ in filter(lambda x: x.endswith('_evaluator'), evs.__all__):
__ev__ = getattr(evs, __ev_name__) __ev__ = getattr(evs, __ev_name__)
if hasattr(__ev__, 'argspec'): if hasattr(__ev__, 'argspec'):
argspec = __ev__.argspec argspec = __ev__.argspec
else: else:
argspec = inspect.getargspec(__ev__) argspec = inspect.getargspec(__ev__)
parent_names = filter(lambda x: x in ['input', 'label'], argspec.args) parent_names = filter(lambda x: x in ['input', 'label', 'weight'],
argspec.args)
v2_ev = __convert_to_v2__( v2_ev = __convert_to_v2__(
__ev_name__, __ev_name__,
parent_names=parent_names, parent_names=parent_names,
is_default_name='name' in argspec.args, is_default_name='name' in argspec.args,
attach_parent=True) attach_parent=True)
globals()[__ev_name__] = v2_ev
globals()[__ev_name__].__name__ = __ev_name__ __new_name__ = convert_to_new_name(__ev_name__)
__all__.append(__ev_name__)
globals()[__new_name__] = v2_ev
globals()[__new_name__].__name__ = __new_name__
__all__.append(__new_name__)
initialize() initialize()

@ -19,7 +19,7 @@ import paddle.v2.data_type as data_type
import paddle.v2.layer as layer import paddle.v2.layer as layer
import paddle.v2.pooling as pooling import paddle.v2.pooling as pooling
import paddle.v2.networks as networks import paddle.v2.networks as networks
import paddle.v2.evaluators as evaluators import paddle.v2.evaluator as evaluator
pixel = layer.data(name='pixel', type=data_type.dense_vector(128)) pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
label = layer.data(name='label', type=data_type.integer_value(10)) label = layer.data(name='label', type=data_type.integer_value(10))
@ -273,7 +273,7 @@ class EvaluatorTest(unittest.TestCase):
lbl = layer.data(name='label', type=data_type.integer_value(10)) lbl = layer.data(name='label', type=data_type.integer_value(10))
cost = layer.cross_entropy_cost(input=output, label=lbl) cost = layer.cross_entropy_cost(input=output, label=lbl)
evaluators.classification_error_evaluator(input=output, label=lbl) evaluator.classification_error(input=output, label=lbl)
print layer.parse_network(cost) print layer.parse_network(cost)
print layer.parse_network(output) print layer.parse_network(output)

Loading…
Cancel
Save