|
|
|
@ -125,11 +125,13 @@ class RecurrentOpTest1(unittest.TestCase):
|
|
|
|
name='x',
|
|
|
|
name='x',
|
|
|
|
append_batch_size=False,
|
|
|
|
append_batch_size=False,
|
|
|
|
**self.p_info)
|
|
|
|
**self.p_info)
|
|
|
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
h_boot = data(
|
|
|
|
h_boot = data(
|
|
|
|
shape=[self.input_dim],
|
|
|
|
shape=[self.input_dim],
|
|
|
|
data_type='float32',
|
|
|
|
data_type='float32',
|
|
|
|
name='h_boot',
|
|
|
|
name='h_boot',
|
|
|
|
**self.p_info)
|
|
|
|
**self.p_info)
|
|
|
|
|
|
|
|
h_boot.stop_gradient = False
|
|
|
|
|
|
|
|
|
|
|
|
rnn = StaticRNN(main_program=self.main_program)
|
|
|
|
rnn = StaticRNN(main_program=self.main_program)
|
|
|
|
with rnn.step():
|
|
|
|
with rnn.step():
|
|
|
|
@ -256,11 +258,13 @@ class RecurrentOpTest2(RecurrentOpTest1):
|
|
|
|
name='x',
|
|
|
|
name='x',
|
|
|
|
append_batch_size=False,
|
|
|
|
append_batch_size=False,
|
|
|
|
**self.p_info)
|
|
|
|
**self.p_info)
|
|
|
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
h_boot = data(
|
|
|
|
h_boot = data(
|
|
|
|
shape=[self.input_dim],
|
|
|
|
shape=[self.input_dim],
|
|
|
|
data_type='float32',
|
|
|
|
data_type='float32',
|
|
|
|
name='h_boot',
|
|
|
|
name='h_boot',
|
|
|
|
**self.p_info)
|
|
|
|
**self.p_info)
|
|
|
|
|
|
|
|
h_boot.stop_gradient = False
|
|
|
|
|
|
|
|
|
|
|
|
rnn = StaticRNN(main_program=self.main_program)
|
|
|
|
rnn = StaticRNN(main_program=self.main_program)
|
|
|
|
with rnn.step():
|
|
|
|
with rnn.step():
|
|
|
|
@ -353,18 +357,21 @@ class RecurrentOpTest3(RecurrentOpTest1):
|
|
|
|
name='x',
|
|
|
|
name='x',
|
|
|
|
append_batch_size=False,
|
|
|
|
append_batch_size=False,
|
|
|
|
**self.p_info)
|
|
|
|
**self.p_info)
|
|
|
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
h_boot1 = data(
|
|
|
|
h_boot1 = data(
|
|
|
|
shape=[self.batch_size, self.input_dim],
|
|
|
|
shape=[self.batch_size, self.input_dim],
|
|
|
|
data_type='float32',
|
|
|
|
data_type='float32',
|
|
|
|
name='h_boot1',
|
|
|
|
name='h_boot1',
|
|
|
|
append_batch_size=False,
|
|
|
|
append_batch_size=False,
|
|
|
|
**self.p_info)
|
|
|
|
**self.p_info)
|
|
|
|
|
|
|
|
h_boot1.stop_gradient = False
|
|
|
|
h_boot2 = data(
|
|
|
|
h_boot2 = data(
|
|
|
|
shape=[self.batch_size, self.input_dim],
|
|
|
|
shape=[self.batch_size, self.input_dim],
|
|
|
|
data_type='float32',
|
|
|
|
data_type='float32',
|
|
|
|
name='h_boot2',
|
|
|
|
name='h_boot2',
|
|
|
|
append_batch_size=False,
|
|
|
|
append_batch_size=False,
|
|
|
|
**self.p_info)
|
|
|
|
**self.p_info)
|
|
|
|
|
|
|
|
h_boot2.stop_gradient = False
|
|
|
|
|
|
|
|
|
|
|
|
rnn = StaticRNN(main_program=self.main_program)
|
|
|
|
rnn = StaticRNN(main_program=self.main_program)
|
|
|
|
with rnn.step():
|
|
|
|
with rnn.step():
|
|
|
|
|