Bug Fix: Paddle-TRT cannot handle adaptive pooling in pool2d op converter and "num" attribute in split op converter (#20733)
* fix pool2d trt converter, test=develop * add fix for split op converter, test=developyaoxuefeng
parent
1105b93288
commit
e89c16b90d
@ -1,5 +1,5 @@
|
|||||||
nv_library(tensorrt_plugin
|
nv_library(tensorrt_plugin
|
||||||
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu
|
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu
|
||||||
prelu_op_plugin.cu trt_plugin_factory.cc
|
prelu_op_plugin.cu trt_plugin_factory.cc
|
||||||
avg_pool_op_plugin.cu swish_op_plugin.cu
|
pool_op_plugin.cu swish_op_plugin.cu
|
||||||
DEPS enforce tensorrt_engine prelu)
|
DEPS enforce tensorrt_engine prelu)
|
||||||
|
@ -0,0 +1,52 @@
|
|||||||
|
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include <gflags/gflags.h>
|
||||||
|
#include <glog/logging.h>
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
|
||||||
|
#include "paddle/fluid/inference/tests/api/trt_test_helper.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace inference {
|
||||||
|
|
||||||
|
TEST(TensorRT, split_converter) {
|
||||||
|
std::string model_dir = FLAGS_infer_model + "/split_converter";
|
||||||
|
AnalysisConfig config;
|
||||||
|
int batch_size = 4;
|
||||||
|
config.EnableUseGpu(100, 0);
|
||||||
|
config.SetModel(model_dir);
|
||||||
|
config.SwitchUseFeedFetchOps(false);
|
||||||
|
config.EnableTensorRtEngine(1 << 20, batch_size, 1,
|
||||||
|
AnalysisConfig::Precision::kFloat32, false);
|
||||||
|
|
||||||
|
auto predictor = CreatePaddlePredictor(config);
|
||||||
|
|
||||||
|
int channels = 4;
|
||||||
|
int height = 4;
|
||||||
|
int width = 4;
|
||||||
|
int input_num = batch_size * channels * height * width;
|
||||||
|
float *input = new float[input_num];
|
||||||
|
memset(input, 1.0, input_num * sizeof(float));
|
||||||
|
|
||||||
|
auto input_names = predictor->GetInputNames();
|
||||||
|
auto input_t = predictor->GetInputTensor(input_names[0]);
|
||||||
|
input_t->Reshape({batch_size, channels, height, width});
|
||||||
|
input_t->copy_from_cpu(input);
|
||||||
|
|
||||||
|
ASSERT_TRUE(predictor->ZeroCopyRun());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace inference
|
||||||
|
} // namespace paddle
|
Loading…
Reference in new issue