parent
ad45a08351
commit
ea8655dbd2
@ -0,0 +1,66 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
|
||||
|
||||
def simple_fc_net(use_feed=None):
|
||||
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
|
||||
hidden = img
|
||||
for _ in range(4):
|
||||
hidden = fluid.layers.fc(
|
||||
hidden,
|
||||
size=200,
|
||||
act='relu',
|
||||
bias_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=1.0)))
|
||||
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
|
||||
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.mean(loss)
|
||||
return loss
|
||||
|
||||
|
||||
def fc_with_batchnorm(use_feed=None):
|
||||
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
|
||||
hidden = img
|
||||
for _ in range(2):
|
||||
hidden = fluid.layers.fc(
|
||||
hidden,
|
||||
size=200,
|
||||
act='relu',
|
||||
bias_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=1.0)))
|
||||
|
||||
hidden = fluid.layers.batch_norm(input=hidden)
|
||||
|
||||
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
|
||||
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.mean(loss)
|
||||
return loss
|
||||
|
||||
|
||||
def init_data(batch_size=32, img_shape=[784], label_range=9):
|
||||
np.random.seed(5)
|
||||
assert isinstance(img_shape, list)
|
||||
input_shape = [batch_size] + img_shape
|
||||
img = np.random.random(size=input_shape).astype(np.float32)
|
||||
label = np.array(
|
||||
[np.random.randint(0, label_range) for _ in range(batch_size)]).reshape(
|
||||
(-1, 1)).astype("int64")
|
||||
return img, label
|
Loading…
Reference in new issue