|
|
|
@ -115,14 +115,19 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
with default_main_program()._lr_schedule_guard():
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
if imperative_base.enabled():
|
|
|
|
|
decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
|
|
|
|
|
decay_rate, staircase)
|
|
|
|
|
return decay
|
|
|
|
|
else:
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
|
|
|
|
|
div_res = global_step / decay_steps
|
|
|
|
|
if staircase:
|
|
|
|
|
div_res = ops.floor(div_res)
|
|
|
|
|
decayed_lr = learning_rate * (decay_rate**div_res)
|
|
|
|
|
div_res = global_step / decay_steps
|
|
|
|
|
if staircase:
|
|
|
|
|
div_res = ops.floor(div_res)
|
|
|
|
|
decayed_lr = learning_rate * (decay_rate**div_res)
|
|
|
|
|
|
|
|
|
|
return decayed_lr
|
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
|
|
|
|
@ -144,14 +149,19 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
|
|
|
|
|
The decayed learning rate
|
|
|
|
|
"""
|
|
|
|
|
with default_main_program()._lr_schedule_guard():
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
if imperative_base.enabled():
|
|
|
|
|
decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
|
|
|
|
|
decay_rate, staircase)
|
|
|
|
|
return decay
|
|
|
|
|
else:
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
|
|
|
|
|
div_res = global_step / decay_steps
|
|
|
|
|
if staircase:
|
|
|
|
|
div_res = ops.floor(div_res)
|
|
|
|
|
decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
|
|
|
|
|
div_res = global_step / decay_steps
|
|
|
|
|
if staircase:
|
|
|
|
|
div_res = ops.floor(div_res)
|
|
|
|
|
decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
|
|
|
|
|
|
|
|
|
|
return decayed_lr
|
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
|
|
|
|
@ -190,15 +200,20 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
|
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
|
"""
|
|
|
|
|
with default_main_program()._lr_schedule_guard():
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
if imperative_base.enabled():
|
|
|
|
|
decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
|
|
|
|
|
decay_rate, staircase)
|
|
|
|
|
return decay
|
|
|
|
|
else:
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
|
|
|
|
|
div_res = global_step / decay_steps
|
|
|
|
|
if staircase:
|
|
|
|
|
div_res = ops.floor(div_res)
|
|
|
|
|
div_res = global_step / decay_steps
|
|
|
|
|
if staircase:
|
|
|
|
|
div_res = ops.floor(div_res)
|
|
|
|
|
|
|
|
|
|
decayed_lr = learning_rate / (1 + decay_rate * div_res)
|
|
|
|
|
decayed_lr = learning_rate / (1 + decay_rate * div_res)
|
|
|
|
|
|
|
|
|
|
return decayed_lr
|
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def polynomial_decay(learning_rate,
|
|
|
|
@ -230,27 +245,33 @@ def polynomial_decay(learning_rate,
|
|
|
|
|
Variable: The decayed learning rate
|
|
|
|
|
"""
|
|
|
|
|
with default_main_program()._lr_schedule_guard():
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
|
|
|
|
|
if cycle:
|
|
|
|
|
div_res = ops.ceil(global_step / decay_steps)
|
|
|
|
|
zero_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=0.0)
|
|
|
|
|
one_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=1.0)
|
|
|
|
|
|
|
|
|
|
with control_flow.Switch() as switch:
|
|
|
|
|
with switch.case(global_step == zero_var):
|
|
|
|
|
tensor.assign(input=one_var, output=div_res)
|
|
|
|
|
decay_steps = decay_steps * div_res
|
|
|
|
|
if imperative_base.enabled():
|
|
|
|
|
decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
|
|
|
|
|
end_learning_rate, power, cycle)
|
|
|
|
|
return decay
|
|
|
|
|
else:
|
|
|
|
|
decay_steps_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=float(decay_steps))
|
|
|
|
|
global_step = nn.elementwise_min(x=global_step, y=decay_steps_var)
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
|
|
|
|
|
decayed_lr = (learning_rate - end_learning_rate) * \
|
|
|
|
|
((1 - global_step / decay_steps) ** power) + end_learning_rate
|
|
|
|
|
return decayed_lr
|
|
|
|
|
if cycle:
|
|
|
|
|
div_res = ops.ceil(global_step / decay_steps)
|
|
|
|
|
zero_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=0.0)
|
|
|
|
|
one_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=1.0)
|
|
|
|
|
|
|
|
|
|
with control_flow.Switch() as switch:
|
|
|
|
|
with switch.case(global_step == zero_var):
|
|
|
|
|
tensor.assign(input=one_var, output=div_res)
|
|
|
|
|
decay_steps = decay_steps * div_res
|
|
|
|
|
else:
|
|
|
|
|
decay_steps_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=float(decay_steps))
|
|
|
|
|
global_step = nn.elementwise_min(
|
|
|
|
|
x=global_step, y=decay_steps_var)
|
|
|
|
|
|
|
|
|
|
decayed_lr = (learning_rate - end_learning_rate) * \
|
|
|
|
|
((1 - global_step / decay_steps) ** power) + end_learning_rate
|
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def piecewise_decay(boundaries, values):
|
|
|
|
|