|
|
|
|
@ -22,7 +22,7 @@ import six
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
from paddle.fluid import core
|
|
|
|
|
from paddle.fluid.optimizer import SGDOptimizer
|
|
|
|
|
from paddle.fluid.optimizer import SGDOptimizer, Adam
|
|
|
|
|
from paddle.fluid.imperative.nn import FC
|
|
|
|
|
from paddle.fluid.imperative.base import to_variable
|
|
|
|
|
from test_imperative_base import new_program_scope
|
|
|
|
|
@ -46,14 +46,9 @@ class TestImperativeOptimizerBase(unittest.TestCase):
|
|
|
|
|
self.batch_num = 10
|
|
|
|
|
|
|
|
|
|
def get_optimizer(self):
|
|
|
|
|
bd = [3, 6, 9]
|
|
|
|
|
self.optimizer = SGDOptimizer(
|
|
|
|
|
learning_rate=fluid.layers.piecewise_decay(
|
|
|
|
|
boundaries=bd,
|
|
|
|
|
values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]))
|
|
|
|
|
return self.optimizer
|
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
def test_optimizer_float32(self):
|
|
|
|
|
def _check_mlp(self):
|
|
|
|
|
seed = 90
|
|
|
|
|
with fluid.imperative.guard():
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
@ -83,16 +78,14 @@ class TestImperativeOptimizerBase(unittest.TestCase):
|
|
|
|
|
dy_out = avg_loss._numpy()
|
|
|
|
|
|
|
|
|
|
if batch_id == 0:
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
for param in mlp.parameters():
|
|
|
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
avg_loss._backward()
|
|
|
|
|
optimizer.minimize(avg_loss)
|
|
|
|
|
mlp.clear_gradients()
|
|
|
|
|
dy_param_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
for param in mlp.parameters():
|
|
|
|
|
dy_param_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
with new_program_scope():
|
|
|
|
|
@ -102,7 +95,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
|
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace(
|
|
|
|
|
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
mnist = MLP('mlp')
|
|
|
|
|
mlp = MLP('mlp')
|
|
|
|
|
optimizer = self.get_optimizer()
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
|
|
|
|
|
@ -110,14 +103,14 @@ class TestImperativeOptimizerBase(unittest.TestCase):
|
|
|
|
|
img = fluid.layers.data(
|
|
|
|
|
name='pixel', shape=[1, 28, 28], dtype='float32')
|
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
cost = mnist(img)
|
|
|
|
|
cost = mlp(img)
|
|
|
|
|
avg_loss = fluid.layers.reduce_mean(cost)
|
|
|
|
|
optimizer.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
|
# initialize params and fetch them
|
|
|
|
|
static_param_init_value = {}
|
|
|
|
|
static_param_name_list = []
|
|
|
|
|
for param in mnist.parameters():
|
|
|
|
|
for param in mlp.parameters():
|
|
|
|
|
static_param_name_list.append(param.name)
|
|
|
|
|
|
|
|
|
|
out = exe.run(fluid.default_startup_program(),
|
|
|
|
|
@ -156,5 +149,70 @@ class TestImperativeOptimizerBase(unittest.TestCase):
|
|
|
|
|
self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestImperativeOptimizerPiecewiseDecay(TestImperativeOptimizerBase):
|
|
|
|
|
def get_optimizer(self):
|
|
|
|
|
bd = [3, 6, 9]
|
|
|
|
|
optimizer = SGDOptimizer(learning_rate=fluid.layers.piecewise_decay(
|
|
|
|
|
boundaries=bd, values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]))
|
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
|
|
def test_sgd(self):
|
|
|
|
|
self._check_mlp()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestImperativeOptimizerNaturalExpDecay(TestImperativeOptimizerBase):
|
|
|
|
|
def get_optimizer(self):
|
|
|
|
|
optimizer = SGDOptimizer(learning_rate=fluid.layers.natural_exp_decay(
|
|
|
|
|
learning_rate=0.1,
|
|
|
|
|
decay_steps=10000,
|
|
|
|
|
decay_rate=0.5,
|
|
|
|
|
staircase=True))
|
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
|
|
def test_sgd(self):
|
|
|
|
|
self._check_mlp()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestImperativeOptimizerExponentialDecay(TestImperativeOptimizerBase):
|
|
|
|
|
def get_optimizer(self):
|
|
|
|
|
optimizer = SGDOptimizer(learning_rate=fluid.layers.exponential_decay(
|
|
|
|
|
learning_rate=0.1,
|
|
|
|
|
decay_steps=10000,
|
|
|
|
|
decay_rate=0.5,
|
|
|
|
|
staircase=True))
|
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
|
|
def test_sgd(self):
|
|
|
|
|
self._check_mlp()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestImperativeOptimizerInverseTimeDecay(TestImperativeOptimizerBase):
|
|
|
|
|
def get_optimizer(self):
|
|
|
|
|
optimizer = Adam(learning_rate=fluid.layers.inverse_time_decay(
|
|
|
|
|
learning_rate=0.1,
|
|
|
|
|
decay_steps=10000,
|
|
|
|
|
decay_rate=0.5,
|
|
|
|
|
staircase=True))
|
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
|
|
def test_adam(self):
|
|
|
|
|
self._check_mlp()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestImperativeOptimizerPolynomialDecay(TestImperativeOptimizerBase):
|
|
|
|
|
def get_optimizer(self):
|
|
|
|
|
optimizer = SGDOptimizer(learning_rate=fluid.layers.polynomial_decay(
|
|
|
|
|
learning_rate=0.1, decay_steps=5, cycle=self.cycle))
|
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
|
|
def test_sgd_cycle(self):
|
|
|
|
|
self.cycle = True
|
|
|
|
|
self._check_mlp()
|
|
|
|
|
|
|
|
|
|
def test_sgd(self):
|
|
|
|
|
self.cycle = False
|
|
|
|
|
self._check_mlp()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|
|