commit
ec9e12a632
@ -0,0 +1,110 @@
|
|||||||
|
# Design Doc: Save Model
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
The model is the output of the training process. There are two
|
||||||
|
ways from which user can obtain a model:
|
||||||
|
|
||||||
|
- Save model triggered by user code: user code asks PaddlePaddle to
|
||||||
|
save a model.
|
||||||
|
- Convert model from the checkpoint: model being converted from
|
||||||
|
pservers' periodic checkpoint. In this way, the user can cancel a
|
||||||
|
job at any time, and still have a relatively fresh model (we
|
||||||
|
checkpoint around every 5 minutes).
|
||||||
|
|
||||||
|
### Trainer Saving Model vs. Pservers Saving Model
|
||||||
|
|
||||||
|
Both trainers and pservers have access to the model. So the model can
|
||||||
|
be saved from a trainer or pservers. We need to decide where the model
|
||||||
|
is saved from.
|
||||||
|
|
||||||
|
#### Dense Update vs. Sparse Update
|
||||||
|
|
||||||
|
There are two types of model update methods: dense update and sparse
|
||||||
|
update (when the model parameter is configured to be sparse).
|
||||||
|
|
||||||
|
- Dense update
|
||||||
|
|
||||||
|
Every trainer has it's own full copy of the model. Every model
|
||||||
|
update will update the entire model.
|
||||||
|
|
||||||
|
- Sparse update
|
||||||
|
|
||||||
|
The training input is sparse, and the trainer does not have the
|
||||||
|
entire model. It will only download the sub-model necessary related
|
||||||
|
to the input. When updating the model, only the sub-model related to
|
||||||
|
the training input is updated.
|
||||||
|
|
||||||
|
|
||||||
|
#### Pservers Saving Model
|
||||||
|
|
||||||
|
The benefit of letting pservers save model is they have the entire
|
||||||
|
model all the time. However, since pservers are on different nodes, it
|
||||||
|
requires a merging process to merge model shards into the same
|
||||||
|
model. Thus requires the pservers to write models to a distributed
|
||||||
|
filesystem, making the checkpoint shards visible to the merge program.
|
||||||
|
|
||||||
|
#### Trainer Saving Model
|
||||||
|
|
||||||
|
The benefit of letting one trainer to save the model is it does not
|
||||||
|
require a distributed filesystem. And it's reusing the same save model
|
||||||
|
logic when training locally - except when doing sparse update, the
|
||||||
|
trainer needs to download the entire model during the saving process.
|
||||||
|
|
||||||
|
#### Conclusion
|
||||||
|
|
||||||
|
Given trainer saving model does not require a distributed filesystem,
|
||||||
|
and is an intuitive extension to trainer saving model when training
|
||||||
|
locally, we decide to let the trainer save the model when doing
|
||||||
|
distributed training.
|
||||||
|
|
||||||
|
|
||||||
|
### Convert Model from Checkpoint
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
|
||||||
|
## Timeline
|
||||||
|
|
||||||
|
We first implement trainer save the model. Converting the latest
|
||||||
|
snapshot to a model will be a TODO for future.
|
||||||
|
|
||||||
|
|
||||||
|
## Trainer Save Model
|
||||||
|
|
||||||
|
### Trainer Election
|
||||||
|
|
||||||
|
One trainer will be elected as the one to save the model. When using
|
||||||
|
etcd, trainer ID is a randomly generated UUID, we will utilize etcd to
|
||||||
|
elect one trainer. When not using etcd, unique trainer IDs will be
|
||||||
|
given by the administrator, the trainer whose ID is "0" is elected to
|
||||||
|
save the model.
|
||||||
|
|
||||||
|
### Model Save Path
|
||||||
|
|
||||||
|
Each trainer will be given the directory to save the model. The
|
||||||
|
elected trainer will save the model to
|
||||||
|
`given-directory/trainerID`. Since the trainer ID is unique, this
|
||||||
|
would prevent concurrent save to the same file when multiple trainers
|
||||||
|
are elected to save the model when split-brain problem happens.
|
||||||
|
|
||||||
|
### What Happens When Model Is Saving
|
||||||
|
|
||||||
|
It takes some time to save model, we need to define what will happen
|
||||||
|
when save model is taking place.
|
||||||
|
|
||||||
|
When doing dense update, the trainer uses the local model. Pservers
|
||||||
|
does not need to pause model update.
|
||||||
|
|
||||||
|
When doing sparse update. The trainer needs to download the entire
|
||||||
|
model while saving. To get the most accurate model, the model update
|
||||||
|
needs to be paused before the download starts and resumed after the
|
||||||
|
download finishes. Otherwise, the trainer gets a model that is
|
||||||
|
"polluted": some part of the model is old, some part of the model is
|
||||||
|
new.
|
||||||
|
|
||||||
|
It's unclear that the "polluted" model will be inferior due to the
|
||||||
|
stochastic nature of deep learning, and pausing the model update will
|
||||||
|
add more complexity to the system. Since supporting sparse update is a
|
||||||
|
TODO item. We defer the evaluation of pause the model update or not
|
||||||
|
during saving model to the future.
|
@ -0,0 +1,78 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace framework {
|
||||||
|
|
||||||
|
class Tensor {
|
||||||
|
using paddle::platform::Place;
|
||||||
|
using paddle::platform::get_place;
|
||||||
|
|
||||||
|
public:
|
||||||
|
template <typename T>
|
||||||
|
const T* data() const {
|
||||||
|
PADDLE_ASSERT(holder_ != nullptr,
|
||||||
|
"Tensor::data must be called after Tensor::mutable_data");
|
||||||
|
return static_cast<const T*>(holder->Ptr());
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, // must be POD types
|
||||||
|
typename = std::enable_if<std::is_pod<T>::value>::type>
|
||||||
|
T* mutable_data(DDim dims, Place place) {
|
||||||
|
if (holder_ == nullptr || holder_->Place() != place ||
|
||||||
|
holder_->Size() < dims.product() * sizeof(T)) {
|
||||||
|
holder_.reset(new PlaceholderImpl(place, dims.product() * sizeof(T)));
|
||||||
|
}
|
||||||
|
return static_cast<T*>(holder_->Ptr());
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, // must be POD types
|
||||||
|
typename = std::enable_if<std::is_pod<T>::value>::type>
|
||||||
|
T* mutable_data(DDim dims) {
|
||||||
|
return mutable_data<T>(dims, paddle::platform::get_place());
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
// Placeholder hides type T, so it doesn't appear as a template
|
||||||
|
// parameter of Variable.
|
||||||
|
struct Placeholder {
|
||||||
|
virtual ~Placeholder() {}
|
||||||
|
virtual void* Ptr() const = 0;
|
||||||
|
virtual Place Place() const = 0;
|
||||||
|
virtual size_t Size() const = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct PlaceholderImpl : public Placeholder {
|
||||||
|
PlaceholderImpl(Place pl, size_t size)
|
||||||
|
: ptr_(paddle::memory::Alloc(pl, size), paddle::memory::Deleter(pl)),
|
||||||
|
place_(pl),
|
||||||
|
size_(size) {}
|
||||||
|
|
||||||
|
virtual void* Ptr() const { return static_cast<void*>(ptr_.get()); }
|
||||||
|
virtual size_t Size() const { return size_; }
|
||||||
|
virtual Place Place() const { return place_; }
|
||||||
|
|
||||||
|
std::unique_ptr<T, memory::Deleter> ptr_;
|
||||||
|
Place place_; // record the place of ptr_.
|
||||||
|
size_t size_; // size of the memory block.
|
||||||
|
};
|
||||||
|
|
||||||
|
std::unique_ptr<Placeholder> holder_; // holds the memory block if allocated.
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace framework
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,238 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "nnpack.h"
|
||||||
|
#include "paddle/function/ConvOp.h"
|
||||||
|
|
||||||
|
DEFINE_bool(nnpack_allocate_outside,
|
||||||
|
false,
|
||||||
|
"Allocate and free workspace memory outside the NNPACK interface.");
|
||||||
|
DEFINE_int32(nnpack_num_threads,
|
||||||
|
0,
|
||||||
|
"The number of nnpack threads"
|
||||||
|
"default: 0; 0 to disable threadpool.");
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
nnp_convolution_algorithm get_nnp_convolution_algorithm(
|
||||||
|
const std::string& algorithm) {
|
||||||
|
if (algorithm == "auto") {
|
||||||
|
return nnp_convolution_algorithm_auto;
|
||||||
|
} else if (algorithm == "ft8x8") {
|
||||||
|
return nnp_convolution_algorithm_ft8x8;
|
||||||
|
} else if (algorithm == "ft16x16") {
|
||||||
|
return nnp_convolution_algorithm_ft16x16;
|
||||||
|
} else if (algorithm == "wt8x8") {
|
||||||
|
return nnp_convolution_algorithm_wt8x8;
|
||||||
|
} else if (algorithm == "implicit-gemm") {
|
||||||
|
return nnp_convolution_algorithm_implicit_gemm;
|
||||||
|
} else if (algorithm == "direct") {
|
||||||
|
return nnp_convolution_algorithm_direct;
|
||||||
|
} else {
|
||||||
|
return nnp_convolution_algorithm_auto;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <DeviceType Device>
|
||||||
|
class NNPACKConvFunction : public ConvFunctionBase {
|
||||||
|
public:
|
||||||
|
void init(const FuncConfig& config) override {
|
||||||
|
ConvFunctionBase::init(config);
|
||||||
|
CHECK_EQ(groups_, (size_t)1);
|
||||||
|
algorithm_ = get_nnp_convolution_algorithm(config.get<std::string>("algo"));
|
||||||
|
// algorithm_ = nnp_convolution_algorithm_auto;
|
||||||
|
transform_strategy_ = nnp_convolution_transform_strategy_compute;
|
||||||
|
nnp_status status = nnp_initialize();
|
||||||
|
CHECK_EQ(status, nnp_status_success);
|
||||||
|
workspaceBuffer_ = nullptr;
|
||||||
|
workspaceSize_ = 0;
|
||||||
|
|
||||||
|
threadpool_ = nullptr;
|
||||||
|
if (FLAGS_nnpack_num_threads) {
|
||||||
|
threadpool_ = pthreadpool_create(FLAGS_nnpack_num_threads);
|
||||||
|
VLOG(3) << "Number of threads "
|
||||||
|
<< pthreadpool_get_threads_count(threadpool_);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
~NNPACKConvFunction() {
|
||||||
|
if (threadpool_) {
|
||||||
|
pthreadpool_destroy(threadpool_);
|
||||||
|
}
|
||||||
|
if (workspaceBuffer_) {
|
||||||
|
free(workspaceBuffer_);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void check(const BufferArgs& inputs,
|
||||||
|
const BufferArgs& outputs) override {
|
||||||
|
const TensorShape& input = inputs[0].shape();
|
||||||
|
const TensorShape& filter = inputs[1].shape();
|
||||||
|
const TensorShape& output = outputs[0].shape();
|
||||||
|
checkShape(input, filter, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
||||||
|
CHECK_EQ(numInputs_, inputs.size());
|
||||||
|
CHECK_EQ(numOutputs_, outputs.size());
|
||||||
|
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
||||||
|
check(inputs, outputs);
|
||||||
|
const TensorShape& input = inputs[0].shape();
|
||||||
|
const TensorShape& filter = inputs[1].shape();
|
||||||
|
const TensorShape& output = outputs[0].shape();
|
||||||
|
|
||||||
|
size_t batchSize = input[0];
|
||||||
|
size_t inputChannels = input[1];
|
||||||
|
size_t inputHeight = input[2];
|
||||||
|
size_t inputWidth = input[3];
|
||||||
|
size_t filterHeight = getFilterHeight(filter);
|
||||||
|
size_t filterWidth = getFilterWidth(filter);
|
||||||
|
size_t outputChannels = output[1];
|
||||||
|
// size_t outputHeight = output[2];
|
||||||
|
// size_t outputWidth = output[3];
|
||||||
|
|
||||||
|
nnp_size inputSize = {.width = inputWidth, .height = inputHeight};
|
||||||
|
nnp_padding padding = {.top = (size_t)paddingH(),
|
||||||
|
.right = (size_t)paddingW(),
|
||||||
|
.bottom = (size_t)paddingH(),
|
||||||
|
.left = (size_t)paddingW()};
|
||||||
|
nnp_size kernelSize = {.width = filterWidth, .height = filterHeight};
|
||||||
|
nnp_size outputSubsampling = {.width = (size_t)strideW(),
|
||||||
|
.height = (size_t)strideH()};
|
||||||
|
|
||||||
|
float* inputData = inputs[0].data<float>();
|
||||||
|
float* filterData = inputs[1].data<float>();
|
||||||
|
float* outputData = outputs[0].data<float>();
|
||||||
|
|
||||||
|
void* bufferPtr = nullptr;
|
||||||
|
size_t* sizePtr = nullptr;
|
||||||
|
size_t needSize;
|
||||||
|
if (FLAGS_nnpack_allocate_outside) {
|
||||||
|
if (batchSize == 1) {
|
||||||
|
nnp_status status = nnp_convolution_inference(algorithm_,
|
||||||
|
transform_strategy_,
|
||||||
|
inputChannels,
|
||||||
|
outputChannels,
|
||||||
|
inputSize,
|
||||||
|
padding,
|
||||||
|
kernelSize,
|
||||||
|
outputSubsampling,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
&needSize,
|
||||||
|
nnp_activation_identity,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
nullptr);
|
||||||
|
CHECK_EQ(status, nnp_status_success);
|
||||||
|
} else {
|
||||||
|
// only supports stride = 1
|
||||||
|
CHECK_EQ(strideH(), 1);
|
||||||
|
CHECK_EQ(strideW(), 1);
|
||||||
|
nnp_status status = nnp_convolution_output(algorithm_,
|
||||||
|
batchSize,
|
||||||
|
inputChannels,
|
||||||
|
outputChannels,
|
||||||
|
inputSize,
|
||||||
|
padding,
|
||||||
|
kernelSize,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
&needSize,
|
||||||
|
nnp_activation_identity,
|
||||||
|
nullptr,
|
||||||
|
nullptr,
|
||||||
|
nullptr);
|
||||||
|
CHECK_EQ(status, nnp_status_success);
|
||||||
|
}
|
||||||
|
|
||||||
|
VLOG(3) << "workspace size is " << needSize;
|
||||||
|
if (needSize > workspaceSize_) {
|
||||||
|
workspaceSize_ = needSize;
|
||||||
|
if (workspaceBuffer_) {
|
||||||
|
free(workspaceBuffer_);
|
||||||
|
} else {
|
||||||
|
posix_memalign(&workspaceBuffer_, 64, needSize);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (needSize) {
|
||||||
|
bufferPtr = workspaceBuffer_;
|
||||||
|
sizePtr = &needSize;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (batchSize == 1) {
|
||||||
|
nnp_status status =
|
||||||
|
nnp_convolution_inference(algorithm_,
|
||||||
|
transform_strategy_,
|
||||||
|
inputChannels,
|
||||||
|
outputChannels,
|
||||||
|
inputSize,
|
||||||
|
padding,
|
||||||
|
kernelSize,
|
||||||
|
outputSubsampling,
|
||||||
|
inputData,
|
||||||
|
filterData,
|
||||||
|
nullptr, /* bias */
|
||||||
|
outputData,
|
||||||
|
bufferPtr,
|
||||||
|
sizePtr,
|
||||||
|
nnp_activation_identity,
|
||||||
|
nullptr,
|
||||||
|
threadpool_, /* threadpool */
|
||||||
|
nullptr);
|
||||||
|
CHECK_EQ(status, nnp_status_success);
|
||||||
|
} else {
|
||||||
|
// only supports stride = 1
|
||||||
|
CHECK_EQ(strideH(), 1);
|
||||||
|
CHECK_EQ(strideW(), 1);
|
||||||
|
nnp_status status = nnp_convolution_output(algorithm_,
|
||||||
|
batchSize,
|
||||||
|
inputChannels,
|
||||||
|
outputChannels,
|
||||||
|
inputSize,
|
||||||
|
padding,
|
||||||
|
kernelSize,
|
||||||
|
inputData,
|
||||||
|
filterData,
|
||||||
|
nullptr, /* bias */
|
||||||
|
outputData,
|
||||||
|
bufferPtr,
|
||||||
|
sizePtr,
|
||||||
|
nnp_activation_identity,
|
||||||
|
nullptr,
|
||||||
|
threadpool_, /* threadpool */
|
||||||
|
nullptr);
|
||||||
|
CHECK_EQ(status, nnp_status_success);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
nnp_convolution_algorithm algorithm_;
|
||||||
|
nnp_convolution_transform_strategy transform_strategy_;
|
||||||
|
void* workspaceBuffer_;
|
||||||
|
size_t workspaceSize_;
|
||||||
|
pthreadpool_t threadpool_;
|
||||||
|
};
|
||||||
|
|
||||||
|
REGISTER_TYPED_FUNC(NNPACKConv, CPU, NNPACKConvFunction);
|
||||||
|
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,99 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "paddle/function/Function.h"
|
||||||
|
#include "paddle/function/FunctionTest.h"
|
||||||
|
|
||||||
|
DEFINE_string(algo,
|
||||||
|
"auto",
|
||||||
|
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
|
||||||
|
"implicit-gemm, or direct) for computing convolution of NNPACK.");
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \
|
||||||
|
if (algo == "direct" && filterSize != 1) continue; \
|
||||||
|
if (algo == "direct" && batchSize != 1) continue; \
|
||||||
|
if (algo == "wt8x8" && filterSize != 3) continue; \
|
||||||
|
if (algo == "implicit-gemm" && batchSize != 1) continue; \
|
||||||
|
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;
|
||||||
|
|
||||||
|
class ConvolutionTest {
|
||||||
|
public:
|
||||||
|
ConvolutionTest(const std::string& conv1,
|
||||||
|
const std::string& conv2,
|
||||||
|
std::string algo = "auto") {
|
||||||
|
for (size_t batchSize : {1, 32}) {
|
||||||
|
for (size_t inputSize : {7, 14, 54}) {
|
||||||
|
for (size_t filterSize : {1, 3, 5}) {
|
||||||
|
for (size_t inputChannels : {3, 64}) {
|
||||||
|
for (size_t outputChannels : {3, 64, 128}) {
|
||||||
|
if (inputChannels < outputChannels) break;
|
||||||
|
for (size_t stride : {1, 2}) {
|
||||||
|
// if batchSize > 1 NNPACKConv only supports stride = 1
|
||||||
|
if (batchSize > 1 && stride > 1) break;
|
||||||
|
for (size_t padding : {0, 1}) {
|
||||||
|
if (padding >= filterSize) break;
|
||||||
|
size_t outputSize =
|
||||||
|
(inputSize - filterSize + 2 * padding + stride) / stride;
|
||||||
|
IS_NNPACK_SUPPORT(algo, filterSize, stride);
|
||||||
|
LOG(INFO) << " batchSize=" << batchSize
|
||||||
|
<< " inputChannels=" << inputChannels
|
||||||
|
<< " inputHeight=" << inputSize
|
||||||
|
<< " inputWidth=" << inputSize
|
||||||
|
<< " outputChannels=" << outputChannels
|
||||||
|
<< " filterHeight=" << filterSize
|
||||||
|
<< " filterWidth=" << filterSize
|
||||||
|
<< " outputHeight=" << outputSize
|
||||||
|
<< " outputWidth=" << outputSize
|
||||||
|
<< " stride=" << stride << " padding=" << padding;
|
||||||
|
|
||||||
|
std::vector<size_t> paddings = {padding, padding};
|
||||||
|
std::vector<size_t> strides = {stride, stride};
|
||||||
|
Compare2Function<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
|
||||||
|
conv1,
|
||||||
|
conv2,
|
||||||
|
FuncConfig()
|
||||||
|
.set("paddings", paddings)
|
||||||
|
.set("strides", strides)
|
||||||
|
.set("groups", (size_t)1)
|
||||||
|
.set("algo", algo));
|
||||||
|
|
||||||
|
TensorShape shape0{
|
||||||
|
batchSize, inputChannels, inputSize, inputSize};
|
||||||
|
TensorShape shape1{
|
||||||
|
outputChannels, inputChannels, filterSize, filterSize};
|
||||||
|
TensorShape shape2{
|
||||||
|
batchSize, outputChannels, outputSize, outputSize};
|
||||||
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape0));
|
||||||
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape1));
|
||||||
|
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape2));
|
||||||
|
test.run();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST(Convolution, NNPACK) {
|
||||||
|
// NNPACK only supports stride = 1
|
||||||
|
ConvolutionTest test("GemmConv-CPU", "NNPACKConv-CPU", FLAGS_algo);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,16 @@
|
|||||||
|
# Find the NNPACK library
|
||||||
|
# NNPACK_ROOT - where to find NNPACK include and library.
|
||||||
|
#
|
||||||
|
|
||||||
|
set(NNPACK_FOUND OFF)
|
||||||
|
set(NNPACK_ROOT $ENV{NNPACK_ROOT} CACHE PATH "Folder contains NNPACK")
|
||||||
|
find_path(NNPACK_INC_DIR nnpack.h PATHS ${NNPACK_ROOT}/include)
|
||||||
|
find_library(NNPACK_LIB NAMES nnpack PATHS ${NNPACK_ROOT}/lib)
|
||||||
|
find_library(PTHREADPOOL_LIB NAMES pthreadpool PATHS ${NNPACK_ROOT}/lib)
|
||||||
|
|
||||||
|
if(NNPACK_INC_DIR AND NNPACK_LIB AND PTHREADPOOL_LIB)
|
||||||
|
set(NNPACK_FOUND ON)
|
||||||
|
INCLUDE_DIRECTORIES(${NNPACK_INC_DIR})
|
||||||
|
else()
|
||||||
|
message(FATAL_ERROR "Cannot find NNPACK in (${NNPACK_ROOT})")
|
||||||
|
endif()
|
Loading…
Reference in new issue