commit
ec9e12a632
@ -0,0 +1,110 @@
|
||||
# Design Doc: Save Model
|
||||
|
||||
## Overview
|
||||
|
||||
The model is the output of the training process. There are two
|
||||
ways from which user can obtain a model:
|
||||
|
||||
- Save model triggered by user code: user code asks PaddlePaddle to
|
||||
save a model.
|
||||
- Convert model from the checkpoint: model being converted from
|
||||
pservers' periodic checkpoint. In this way, the user can cancel a
|
||||
job at any time, and still have a relatively fresh model (we
|
||||
checkpoint around every 5 minutes).
|
||||
|
||||
### Trainer Saving Model vs. Pservers Saving Model
|
||||
|
||||
Both trainers and pservers have access to the model. So the model can
|
||||
be saved from a trainer or pservers. We need to decide where the model
|
||||
is saved from.
|
||||
|
||||
#### Dense Update vs. Sparse Update
|
||||
|
||||
There are two types of model update methods: dense update and sparse
|
||||
update (when the model parameter is configured to be sparse).
|
||||
|
||||
- Dense update
|
||||
|
||||
Every trainer has it's own full copy of the model. Every model
|
||||
update will update the entire model.
|
||||
|
||||
- Sparse update
|
||||
|
||||
The training input is sparse, and the trainer does not have the
|
||||
entire model. It will only download the sub-model necessary related
|
||||
to the input. When updating the model, only the sub-model related to
|
||||
the training input is updated.
|
||||
|
||||
|
||||
#### Pservers Saving Model
|
||||
|
||||
The benefit of letting pservers save model is they have the entire
|
||||
model all the time. However, since pservers are on different nodes, it
|
||||
requires a merging process to merge model shards into the same
|
||||
model. Thus requires the pservers to write models to a distributed
|
||||
filesystem, making the checkpoint shards visible to the merge program.
|
||||
|
||||
#### Trainer Saving Model
|
||||
|
||||
The benefit of letting one trainer to save the model is it does not
|
||||
require a distributed filesystem. And it's reusing the same save model
|
||||
logic when training locally - except when doing sparse update, the
|
||||
trainer needs to download the entire model during the saving process.
|
||||
|
||||
#### Conclusion
|
||||
|
||||
Given trainer saving model does not require a distributed filesystem,
|
||||
and is an intuitive extension to trainer saving model when training
|
||||
locally, we decide to let the trainer save the model when doing
|
||||
distributed training.
|
||||
|
||||
|
||||
### Convert Model from Checkpoint
|
||||
|
||||
TODO
|
||||
|
||||
|
||||
## Timeline
|
||||
|
||||
We first implement trainer save the model. Converting the latest
|
||||
snapshot to a model will be a TODO for future.
|
||||
|
||||
|
||||
## Trainer Save Model
|
||||
|
||||
### Trainer Election
|
||||
|
||||
One trainer will be elected as the one to save the model. When using
|
||||
etcd, trainer ID is a randomly generated UUID, we will utilize etcd to
|
||||
elect one trainer. When not using etcd, unique trainer IDs will be
|
||||
given by the administrator, the trainer whose ID is "0" is elected to
|
||||
save the model.
|
||||
|
||||
### Model Save Path
|
||||
|
||||
Each trainer will be given the directory to save the model. The
|
||||
elected trainer will save the model to
|
||||
`given-directory/trainerID`. Since the trainer ID is unique, this
|
||||
would prevent concurrent save to the same file when multiple trainers
|
||||
are elected to save the model when split-brain problem happens.
|
||||
|
||||
### What Happens When Model Is Saving
|
||||
|
||||
It takes some time to save model, we need to define what will happen
|
||||
when save model is taking place.
|
||||
|
||||
When doing dense update, the trainer uses the local model. Pservers
|
||||
does not need to pause model update.
|
||||
|
||||
When doing sparse update. The trainer needs to download the entire
|
||||
model while saving. To get the most accurate model, the model update
|
||||
needs to be paused before the download starts and resumed after the
|
||||
download finishes. Otherwise, the trainer gets a model that is
|
||||
"polluted": some part of the model is old, some part of the model is
|
||||
new.
|
||||
|
||||
It's unclear that the "polluted" model will be inferior due to the
|
||||
stochastic nature of deep learning, and pausing the model update will
|
||||
add more complexity to the system. Since supporting sparse update is a
|
||||
TODO item. We defer the evaluation of pause the model update or not
|
||||
during saving model to the future.
|
@ -0,0 +1,78 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
|
||||
class Tensor {
|
||||
using paddle::platform::Place;
|
||||
using paddle::platform::get_place;
|
||||
|
||||
public:
|
||||
template <typename T>
|
||||
const T* data() const {
|
||||
PADDLE_ASSERT(holder_ != nullptr,
|
||||
"Tensor::data must be called after Tensor::mutable_data");
|
||||
return static_cast<const T*>(holder->Ptr());
|
||||
}
|
||||
|
||||
template <typename T, // must be POD types
|
||||
typename = std::enable_if<std::is_pod<T>::value>::type>
|
||||
T* mutable_data(DDim dims, Place place) {
|
||||
if (holder_ == nullptr || holder_->Place() != place ||
|
||||
holder_->Size() < dims.product() * sizeof(T)) {
|
||||
holder_.reset(new PlaceholderImpl(place, dims.product() * sizeof(T)));
|
||||
}
|
||||
return static_cast<T*>(holder_->Ptr());
|
||||
}
|
||||
|
||||
template <typename T, // must be POD types
|
||||
typename = std::enable_if<std::is_pod<T>::value>::type>
|
||||
T* mutable_data(DDim dims) {
|
||||
return mutable_data<T>(dims, paddle::platform::get_place());
|
||||
}
|
||||
|
||||
private:
|
||||
// Placeholder hides type T, so it doesn't appear as a template
|
||||
// parameter of Variable.
|
||||
struct Placeholder {
|
||||
virtual ~Placeholder() {}
|
||||
virtual void* Ptr() const = 0;
|
||||
virtual Place Place() const = 0;
|
||||
virtual size_t Size() const = 0;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct PlaceholderImpl : public Placeholder {
|
||||
PlaceholderImpl(Place pl, size_t size)
|
||||
: ptr_(paddle::memory::Alloc(pl, size), paddle::memory::Deleter(pl)),
|
||||
place_(pl),
|
||||
size_(size) {}
|
||||
|
||||
virtual void* Ptr() const { return static_cast<void*>(ptr_.get()); }
|
||||
virtual size_t Size() const { return size_; }
|
||||
virtual Place Place() const { return place_; }
|
||||
|
||||
std::unique_ptr<T, memory::Deleter> ptr_;
|
||||
Place place_; // record the place of ptr_.
|
||||
size_t size_; // size of the memory block.
|
||||
};
|
||||
|
||||
std::unique_ptr<Placeholder> holder_; // holds the memory block if allocated.
|
||||
};
|
||||
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,238 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "nnpack.h"
|
||||
#include "paddle/function/ConvOp.h"
|
||||
|
||||
DEFINE_bool(nnpack_allocate_outside,
|
||||
false,
|
||||
"Allocate and free workspace memory outside the NNPACK interface.");
|
||||
DEFINE_int32(nnpack_num_threads,
|
||||
0,
|
||||
"The number of nnpack threads"
|
||||
"default: 0; 0 to disable threadpool.");
|
||||
|
||||
namespace paddle {
|
||||
|
||||
nnp_convolution_algorithm get_nnp_convolution_algorithm(
|
||||
const std::string& algorithm) {
|
||||
if (algorithm == "auto") {
|
||||
return nnp_convolution_algorithm_auto;
|
||||
} else if (algorithm == "ft8x8") {
|
||||
return nnp_convolution_algorithm_ft8x8;
|
||||
} else if (algorithm == "ft16x16") {
|
||||
return nnp_convolution_algorithm_ft16x16;
|
||||
} else if (algorithm == "wt8x8") {
|
||||
return nnp_convolution_algorithm_wt8x8;
|
||||
} else if (algorithm == "implicit-gemm") {
|
||||
return nnp_convolution_algorithm_implicit_gemm;
|
||||
} else if (algorithm == "direct") {
|
||||
return nnp_convolution_algorithm_direct;
|
||||
} else {
|
||||
return nnp_convolution_algorithm_auto;
|
||||
}
|
||||
}
|
||||
|
||||
template <DeviceType Device>
|
||||
class NNPACKConvFunction : public ConvFunctionBase {
|
||||
public:
|
||||
void init(const FuncConfig& config) override {
|
||||
ConvFunctionBase::init(config);
|
||||
CHECK_EQ(groups_, (size_t)1);
|
||||
algorithm_ = get_nnp_convolution_algorithm(config.get<std::string>("algo"));
|
||||
// algorithm_ = nnp_convolution_algorithm_auto;
|
||||
transform_strategy_ = nnp_convolution_transform_strategy_compute;
|
||||
nnp_status status = nnp_initialize();
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
workspaceBuffer_ = nullptr;
|
||||
workspaceSize_ = 0;
|
||||
|
||||
threadpool_ = nullptr;
|
||||
if (FLAGS_nnpack_num_threads) {
|
||||
threadpool_ = pthreadpool_create(FLAGS_nnpack_num_threads);
|
||||
VLOG(3) << "Number of threads "
|
||||
<< pthreadpool_get_threads_count(threadpool_);
|
||||
}
|
||||
}
|
||||
|
||||
~NNPACKConvFunction() {
|
||||
if (threadpool_) {
|
||||
pthreadpool_destroy(threadpool_);
|
||||
}
|
||||
if (workspaceBuffer_) {
|
||||
free(workspaceBuffer_);
|
||||
}
|
||||
}
|
||||
|
||||
virtual void check(const BufferArgs& inputs,
|
||||
const BufferArgs& outputs) override {
|
||||
const TensorShape& input = inputs[0].shape();
|
||||
const TensorShape& filter = inputs[1].shape();
|
||||
const TensorShape& output = outputs[0].shape();
|
||||
checkShape(input, filter, output);
|
||||
}
|
||||
|
||||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
||||
CHECK_EQ(numInputs_, inputs.size());
|
||||
CHECK_EQ(numOutputs_, outputs.size());
|
||||
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
||||
check(inputs, outputs);
|
||||
const TensorShape& input = inputs[0].shape();
|
||||
const TensorShape& filter = inputs[1].shape();
|
||||
const TensorShape& output = outputs[0].shape();
|
||||
|
||||
size_t batchSize = input[0];
|
||||
size_t inputChannels = input[1];
|
||||
size_t inputHeight = input[2];
|
||||
size_t inputWidth = input[3];
|
||||
size_t filterHeight = getFilterHeight(filter);
|
||||
size_t filterWidth = getFilterWidth(filter);
|
||||
size_t outputChannels = output[1];
|
||||
// size_t outputHeight = output[2];
|
||||
// size_t outputWidth = output[3];
|
||||
|
||||
nnp_size inputSize = {.width = inputWidth, .height = inputHeight};
|
||||
nnp_padding padding = {.top = (size_t)paddingH(),
|
||||
.right = (size_t)paddingW(),
|
||||
.bottom = (size_t)paddingH(),
|
||||
.left = (size_t)paddingW()};
|
||||
nnp_size kernelSize = {.width = filterWidth, .height = filterHeight};
|
||||
nnp_size outputSubsampling = {.width = (size_t)strideW(),
|
||||
.height = (size_t)strideH()};
|
||||
|
||||
float* inputData = inputs[0].data<float>();
|
||||
float* filterData = inputs[1].data<float>();
|
||||
float* outputData = outputs[0].data<float>();
|
||||
|
||||
void* bufferPtr = nullptr;
|
||||
size_t* sizePtr = nullptr;
|
||||
size_t needSize;
|
||||
if (FLAGS_nnpack_allocate_outside) {
|
||||
if (batchSize == 1) {
|
||||
nnp_status status = nnp_convolution_inference(algorithm_,
|
||||
transform_strategy_,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
outputSubsampling,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
&needSize,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
} else {
|
||||
// only supports stride = 1
|
||||
CHECK_EQ(strideH(), 1);
|
||||
CHECK_EQ(strideW(), 1);
|
||||
nnp_status status = nnp_convolution_output(algorithm_,
|
||||
batchSize,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
&needSize,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
}
|
||||
|
||||
VLOG(3) << "workspace size is " << needSize;
|
||||
if (needSize > workspaceSize_) {
|
||||
workspaceSize_ = needSize;
|
||||
if (workspaceBuffer_) {
|
||||
free(workspaceBuffer_);
|
||||
} else {
|
||||
posix_memalign(&workspaceBuffer_, 64, needSize);
|
||||
}
|
||||
}
|
||||
|
||||
if (needSize) {
|
||||
bufferPtr = workspaceBuffer_;
|
||||
sizePtr = &needSize;
|
||||
}
|
||||
}
|
||||
|
||||
if (batchSize == 1) {
|
||||
nnp_status status =
|
||||
nnp_convolution_inference(algorithm_,
|
||||
transform_strategy_,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
outputSubsampling,
|
||||
inputData,
|
||||
filterData,
|
||||
nullptr, /* bias */
|
||||
outputData,
|
||||
bufferPtr,
|
||||
sizePtr,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
threadpool_, /* threadpool */
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
} else {
|
||||
// only supports stride = 1
|
||||
CHECK_EQ(strideH(), 1);
|
||||
CHECK_EQ(strideW(), 1);
|
||||
nnp_status status = nnp_convolution_output(algorithm_,
|
||||
batchSize,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
inputData,
|
||||
filterData,
|
||||
nullptr, /* bias */
|
||||
outputData,
|
||||
bufferPtr,
|
||||
sizePtr,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
threadpool_, /* threadpool */
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
nnp_convolution_algorithm algorithm_;
|
||||
nnp_convolution_transform_strategy transform_strategy_;
|
||||
void* workspaceBuffer_;
|
||||
size_t workspaceSize_;
|
||||
pthreadpool_t threadpool_;
|
||||
};
|
||||
|
||||
REGISTER_TYPED_FUNC(NNPACKConv, CPU, NNPACKConvFunction);
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,99 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "paddle/function/Function.h"
|
||||
#include "paddle/function/FunctionTest.h"
|
||||
|
||||
DEFINE_string(algo,
|
||||
"auto",
|
||||
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
|
||||
"implicit-gemm, or direct) for computing convolution of NNPACK.");
|
||||
|
||||
namespace paddle {
|
||||
|
||||
#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \
|
||||
if (algo == "direct" && filterSize != 1) continue; \
|
||||
if (algo == "direct" && batchSize != 1) continue; \
|
||||
if (algo == "wt8x8" && filterSize != 3) continue; \
|
||||
if (algo == "implicit-gemm" && batchSize != 1) continue; \
|
||||
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;
|
||||
|
||||
class ConvolutionTest {
|
||||
public:
|
||||
ConvolutionTest(const std::string& conv1,
|
||||
const std::string& conv2,
|
||||
std::string algo = "auto") {
|
||||
for (size_t batchSize : {1, 32}) {
|
||||
for (size_t inputSize : {7, 14, 54}) {
|
||||
for (size_t filterSize : {1, 3, 5}) {
|
||||
for (size_t inputChannels : {3, 64}) {
|
||||
for (size_t outputChannels : {3, 64, 128}) {
|
||||
if (inputChannels < outputChannels) break;
|
||||
for (size_t stride : {1, 2}) {
|
||||
// if batchSize > 1 NNPACKConv only supports stride = 1
|
||||
if (batchSize > 1 && stride > 1) break;
|
||||
for (size_t padding : {0, 1}) {
|
||||
if (padding >= filterSize) break;
|
||||
size_t outputSize =
|
||||
(inputSize - filterSize + 2 * padding + stride) / stride;
|
||||
IS_NNPACK_SUPPORT(algo, filterSize, stride);
|
||||
LOG(INFO) << " batchSize=" << batchSize
|
||||
<< " inputChannels=" << inputChannels
|
||||
<< " inputHeight=" << inputSize
|
||||
<< " inputWidth=" << inputSize
|
||||
<< " outputChannels=" << outputChannels
|
||||
<< " filterHeight=" << filterSize
|
||||
<< " filterWidth=" << filterSize
|
||||
<< " outputHeight=" << outputSize
|
||||
<< " outputWidth=" << outputSize
|
||||
<< " stride=" << stride << " padding=" << padding;
|
||||
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
Compare2Function<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
|
||||
conv1,
|
||||
conv2,
|
||||
FuncConfig()
|
||||
.set("paddings", paddings)
|
||||
.set("strides", strides)
|
||||
.set("groups", (size_t)1)
|
||||
.set("algo", algo));
|
||||
|
||||
TensorShape shape0{
|
||||
batchSize, inputChannels, inputSize, inputSize};
|
||||
TensorShape shape1{
|
||||
outputChannels, inputChannels, filterSize, filterSize};
|
||||
TensorShape shape2{
|
||||
batchSize, outputChannels, outputSize, outputSize};
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape0));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape1));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape2));
|
||||
test.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Convolution, NNPACK) {
|
||||
// NNPACK only supports stride = 1
|
||||
ConvolutionTest test("GemmConv-CPU", "NNPACKConv-CPU", FLAGS_algo);
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,16 @@
|
||||
# Find the NNPACK library
|
||||
# NNPACK_ROOT - where to find NNPACK include and library.
|
||||
#
|
||||
|
||||
set(NNPACK_FOUND OFF)
|
||||
set(NNPACK_ROOT $ENV{NNPACK_ROOT} CACHE PATH "Folder contains NNPACK")
|
||||
find_path(NNPACK_INC_DIR nnpack.h PATHS ${NNPACK_ROOT}/include)
|
||||
find_library(NNPACK_LIB NAMES nnpack PATHS ${NNPACK_ROOT}/lib)
|
||||
find_library(PTHREADPOOL_LIB NAMES pthreadpool PATHS ${NNPACK_ROOT}/lib)
|
||||
|
||||
if(NNPACK_INC_DIR AND NNPACK_LIB AND PTHREADPOOL_LIB)
|
||||
set(NNPACK_FOUND ON)
|
||||
INCLUDE_DIRECTORIES(${NNPACK_INC_DIR})
|
||||
else()
|
||||
message(FATAL_ERROR "Cannot find NNPACK in (${NNPACK_ROOT})")
|
||||
endif()
|
Loading…
Reference in new issue