commit
ecef2e6b97
@ -0,0 +1,203 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/reduce_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using framework::Tensor;
|
||||||
|
|
||||||
|
class ReduceOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||||
|
"Input(X) of ReduceOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of ReduceOp should not be null.");
|
||||||
|
auto x_dims = ctx->GetInputDim("X");
|
||||||
|
auto x_rank = x_dims.size();
|
||||||
|
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
|
||||||
|
int dim = ctx->Attrs().Get<int>("dim");
|
||||||
|
if (dim < 0) dim = x_rank + dim;
|
||||||
|
PADDLE_ENFORCE_LT(
|
||||||
|
dim, x_rank,
|
||||||
|
"The dim should be in the range [-rank(input), rank(input)).");
|
||||||
|
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
|
||||||
|
auto dims_vector = vectorize(x_dims);
|
||||||
|
if (keep_dim || x_rank == 1) {
|
||||||
|
dims_vector[dim] = 1;
|
||||||
|
} else {
|
||||||
|
dims_vector.erase(dims_vector.begin() + dim);
|
||||||
|
}
|
||||||
|
auto out_dims = framework::make_ddim(dims_vector);
|
||||||
|
ctx->SetOutputDim("Out", out_dims);
|
||||||
|
if (dim != 0) {
|
||||||
|
// Only pass LoD when not reducing on the first dim.
|
||||||
|
ctx->ShareLoD("X", /*->*/ "Out");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ReduceGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||||
|
"Input(Out@GRAD) should not be null.");
|
||||||
|
auto x_dims = ctx->GetInputDim("X");
|
||||||
|
auto x_rank = x_dims.size();
|
||||||
|
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
|
||||||
|
int dim = ctx->Attrs().Get<int>("dim");
|
||||||
|
if (dim < 0) dim = x_rank + dim;
|
||||||
|
PADDLE_ENFORCE_LT(
|
||||||
|
dim, x_rank,
|
||||||
|
"The dim should be in the range [-rank(input), rank(input)).");
|
||||||
|
auto x_grad_name = framework::GradVarName("X");
|
||||||
|
if (ctx->HasOutput(x_grad_name)) {
|
||||||
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
ReduceOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput(
|
||||||
|
"X",
|
||||||
|
"(Tensor) The input tensor. Tensors with rank at most 6 are supported");
|
||||||
|
AddOutput("Out", "(Tensor) The result tensor.");
|
||||||
|
AddAttr<int>(
|
||||||
|
"dim",
|
||||||
|
"(int, default 1) The dimension to reduce. "
|
||||||
|
"Must be in the range [-rank(input), rank(input)). "
|
||||||
|
"If `dim < 0`, the dim to reduce is `rank + dim`. "
|
||||||
|
"Noting that reducing on the first dim will make the LoD info lost.")
|
||||||
|
.SetDefault(0);
|
||||||
|
AddAttr<bool>("keep_dim",
|
||||||
|
"(bool, default false) "
|
||||||
|
"If true, retain the reduced dimension with length 1.")
|
||||||
|
.SetDefault(false);
|
||||||
|
comment_ = R"DOC(
|
||||||
|
{ReduceOP} operator computes the {reduce} of input tensor along the given dimension.
|
||||||
|
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
|
||||||
|
)DOC";
|
||||||
|
AddComment(comment_);
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
std::string comment_;
|
||||||
|
|
||||||
|
void Replace(std::string &src, std::string from, std::string to) {
|
||||||
|
std::size_t len_from = std::strlen(from.c_str());
|
||||||
|
std::size_t len_to = std::strlen(to.c_str());
|
||||||
|
for (std::size_t pos = src.find(from); pos != std::string::npos;
|
||||||
|
pos = src.find(from, pos + len_to)) {
|
||||||
|
src.replace(pos, len_from, to);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void SetComment(std::string name, std::string op) {
|
||||||
|
Replace(comment_, "{ReduceOP}", name);
|
||||||
|
Replace(comment_, "{reduce}", op);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ReduceSumOpMaker : public ReduceOpMaker {
|
||||||
|
public:
|
||||||
|
ReduceSumOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: ReduceOpMaker(proto, op_checker) {
|
||||||
|
SetComment("ReduceSum", "sum");
|
||||||
|
AddComment(comment_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ReduceMeanOpMaker : public ReduceOpMaker {
|
||||||
|
public:
|
||||||
|
ReduceMeanOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: ReduceOpMaker(proto, op_checker) {
|
||||||
|
SetComment("ReduceMean", "mean");
|
||||||
|
AddComment(comment_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ReduceMaxOpMaker : public ReduceOpMaker {
|
||||||
|
public:
|
||||||
|
ReduceMaxOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: ReduceOpMaker(proto, op_checker) {
|
||||||
|
SetComment("ReduceMax", "max");
|
||||||
|
AddComment(comment_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ReduceMinOpMaker : public ReduceOpMaker {
|
||||||
|
public:
|
||||||
|
ReduceMinOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: ReduceOpMaker(proto, op_checker) {
|
||||||
|
SetComment("ReduceMin", "min");
|
||||||
|
AddComment(comment_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad,
|
||||||
|
ops::ReduceGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
reduce_sum,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::SumFunctor>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(reduce_sum_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
|
||||||
|
ops::SumGradFunctor>);
|
||||||
|
|
||||||
|
REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker,
|
||||||
|
reduce_mean_grad, ops::ReduceGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
reduce_mean,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MeanFunctor>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(reduce_mean_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
|
||||||
|
ops::MeanGradFunctor>);
|
||||||
|
|
||||||
|
REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
|
||||||
|
ops::ReduceGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
reduce_max,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MaxFunctor>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(reduce_max_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
|
||||||
|
ops::MaxOrMinGradFunctor>);
|
||||||
|
|
||||||
|
REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_min_grad,
|
||||||
|
ops::ReduceGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
reduce_min,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MinFunctor>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(reduce_min_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
|
||||||
|
ops::MaxOrMinGradFunctor>);
|
@ -0,0 +1,46 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/reduce_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
reduce_sum,
|
||||||
|
ops::ReduceKernel<paddle::platform::GPUPlace, float, ops::SumFunctor>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(reduce_sum_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::GPUPlace, float,
|
||||||
|
ops::SumGradFunctor>);
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
reduce_mean,
|
||||||
|
ops::ReduceKernel<paddle::platform::GPUPlace, float, ops::MeanFunctor>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(reduce_mean_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::GPUPlace, float,
|
||||||
|
ops::MeanGradFunctor>);
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
reduce_max,
|
||||||
|
ops::ReduceKernel<paddle::platform::GPUPlace, float, ops::MaxFunctor>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(reduce_max_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::GPUPlace, float,
|
||||||
|
ops::MaxOrMinGradFunctor>);
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
reduce_min,
|
||||||
|
ops::ReduceKernel<paddle::platform::GPUPlace, float, ops::MinFunctor>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(reduce_min_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::GPUPlace, float,
|
||||||
|
ops::MaxOrMinGradFunctor>);
|
@ -0,0 +1,200 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
using DDim = framework::DDim;
|
||||||
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||||
|
|
||||||
|
struct SumFunctor {
|
||||||
|
template <typename Place, typename X, typename Y, typename Dim>
|
||||||
|
void operator()(const Place& place, X& x, Y& y, const Dim& dim) {
|
||||||
|
y.device(place) = x.sum(dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct SumGradFunctor {
|
||||||
|
template <typename Place, typename X, typename Y, typename DX, typename DY,
|
||||||
|
typename Dim>
|
||||||
|
void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy,
|
||||||
|
const Dim& dim, int size) {
|
||||||
|
dx.device(place) = dy.broadcast(dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MeanFunctor {
|
||||||
|
template <typename Place, typename X, typename Y, typename Dim>
|
||||||
|
void operator()(const Place& place, X& x, Y& y, const Dim& dim) {
|
||||||
|
y.device(place) = x.mean(dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MeanGradFunctor {
|
||||||
|
template <typename Place, typename X, typename Y, typename DX, typename DY,
|
||||||
|
typename Dim>
|
||||||
|
void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy,
|
||||||
|
const Dim& dim, int size) {
|
||||||
|
dx.device(place) = dy.broadcast(dim) / dx.constant(size);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MaxFunctor {
|
||||||
|
template <typename Place, typename X, typename Y, typename Dim>
|
||||||
|
void operator()(const Place& place, X& x, Y& y, const Dim& dim) {
|
||||||
|
y.device(place) = x.maximum(dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MinFunctor {
|
||||||
|
template <typename Place, typename X, typename Y, typename Dim>
|
||||||
|
void operator()(const Place& place, X& x, Y& y, const Dim& dim) {
|
||||||
|
y.device(place) = x.minimum(dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MaxOrMinGradFunctor {
|
||||||
|
template <typename Place, typename X, typename Y, typename DX, typename DY,
|
||||||
|
typename Dim>
|
||||||
|
void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy,
|
||||||
|
const Dim& dim, int size) {
|
||||||
|
auto equals = x == y.broadcast(dim);
|
||||||
|
auto ones = dx.constant(1);
|
||||||
|
auto zeros = dx.constant(0);
|
||||||
|
// If there are multiple minimum or maximum elements, the subgradient of
|
||||||
|
// each is the set [0, 1], and we pass gradient to all of them here.
|
||||||
|
dx.device(place) = dy.broadcast(dim) * equals.select(ones, zeros);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T, typename Functor>
|
||||||
|
class ReduceKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
int rank = context.Input<Tensor>("X")->dims().size();
|
||||||
|
switch (rank) {
|
||||||
|
case 1:
|
||||||
|
ReduceCompute<1>(context);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
ReduceCompute<2>(context);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
ReduceCompute<3>(context);
|
||||||
|
break;
|
||||||
|
case 4:
|
||||||
|
ReduceCompute<4>(context);
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
ReduceCompute<5>(context);
|
||||||
|
break;
|
||||||
|
case 6:
|
||||||
|
ReduceCompute<6>(context);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
template <size_t D>
|
||||||
|
void ReduceCompute(const framework::ExecutionContext& context) const {
|
||||||
|
auto* input = context.Input<Tensor>("X");
|
||||||
|
auto* output = context.Output<Tensor>("Out");
|
||||||
|
output->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
auto x = EigenTensor<T, D>::From(*input);
|
||||||
|
auto x_rank = static_cast<int>(x.dimensions().size());
|
||||||
|
int dim = static_cast<int>(context.Attr<int>("dim"));
|
||||||
|
if (dim < 0) dim = x_rank + dim;
|
||||||
|
auto reduce_dim = Eigen::array<int, 1>({{dim}});
|
||||||
|
// construct the squeezed output tensor
|
||||||
|
bool keep_dim = context.Attr<bool>("keep_dim");
|
||||||
|
DDim dims = output->dims();
|
||||||
|
auto dims_vector = vectorize(dims);
|
||||||
|
if (keep_dim && x_rank > 1) {
|
||||||
|
dims_vector.erase(dims_vector.begin() + dim);
|
||||||
|
dims = framework::make_ddim(dims_vector);
|
||||||
|
}
|
||||||
|
auto out = EigenTensor < T, D == 1 ? 1 : (D - 1) > ::From(*output, dims);
|
||||||
|
auto& place = context.GetEigenDevice<Place>();
|
||||||
|
Functor functor;
|
||||||
|
functor(place, x, out, reduce_dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T, typename Functor>
|
||||||
|
class ReduceGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
int rank = context.Input<Tensor>("X")->dims().size();
|
||||||
|
switch (rank) {
|
||||||
|
case 1:
|
||||||
|
ReduceGradCompute<1>(context);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
ReduceGradCompute<2>(context);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
ReduceGradCompute<3>(context);
|
||||||
|
break;
|
||||||
|
case 4:
|
||||||
|
ReduceGradCompute<4>(context);
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
ReduceGradCompute<5>(context);
|
||||||
|
break;
|
||||||
|
case 6:
|
||||||
|
ReduceGradCompute<6>(context);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
template <size_t D>
|
||||||
|
void ReduceGradCompute(const framework::ExecutionContext& context) const {
|
||||||
|
auto* input0 = context.Input<Tensor>("X");
|
||||||
|
auto* input1 = context.Input<Tensor>("Out");
|
||||||
|
auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto* output = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
|
||||||
|
output->mutable_data<T>(context.GetPlace());
|
||||||
|
auto x = EigenTensor<T, D>::From(*input0);
|
||||||
|
auto x_grad = EigenTensor<T, D>::From(*output);
|
||||||
|
auto x_rank = static_cast<int>(x.dimensions().size());
|
||||||
|
int dim = static_cast<int>(context.Attr<int>("dim"));
|
||||||
|
if (dim < 0) dim = x_rank + dim;
|
||||||
|
DDim dims = input0->dims();
|
||||||
|
dims[dim] = 1;
|
||||||
|
auto x_reduce = EigenTensor<T, D>::From(*input1, dims);
|
||||||
|
auto x_reduce_grad = EigenTensor<T, D>::From(*input2, dims);
|
||||||
|
|
||||||
|
Eigen::array<int, D> braodcast_dim;
|
||||||
|
for (size_t i = 0; i < D; ++i) braodcast_dim[i] = 1;
|
||||||
|
braodcast_dim[dim] = input0->dims()[dim];
|
||||||
|
auto& place = context.GetEigenDevice<Place>();
|
||||||
|
Functor functor;
|
||||||
|
functor(place, x, x_reduce, x_grad, x_reduce_grad, braodcast_dim,
|
||||||
|
braodcast_dim[dim]);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,89 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestSumOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "reduce_sum"
|
||||||
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||||
|
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(['X'], 'Out')
|
||||||
|
|
||||||
|
|
||||||
|
class TestMeanOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "reduce_mean"
|
||||||
|
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float32")}
|
||||||
|
self.attrs = {'dim': 1}
|
||||||
|
self.outputs = {'Out': self.inputs['X'].mean(axis=self.attrs['dim'])}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(['X'], 'Out')
|
||||||
|
|
||||||
|
|
||||||
|
class TestMaxOp(OpTest):
|
||||||
|
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "reduce_max"
|
||||||
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||||
|
self.attrs = {'dim': -1}
|
||||||
|
self.outputs = {'Out': self.inputs['X'].max(axis=self.attrs['dim'])}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
|
||||||
|
class TestMinOp(OpTest):
|
||||||
|
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "reduce_min"
|
||||||
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||||
|
self.attrs = {'dim': 2}
|
||||||
|
self.outputs = {'Out': self.inputs['X'].min(axis=self.attrs['dim'])}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
|
||||||
|
class TestKeepDimReduce(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "reduce_sum"
|
||||||
|
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||||
|
self.attrs = {'dim': -2, 'keep_dim': True}
|
||||||
|
self.outputs = {
|
||||||
|
'Out': self.inputs['X'].sum(axis=self.attrs['dim'], keepdims=True)
|
||||||
|
}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(['X'], 'Out')
|
||||||
|
|
||||||
|
|
||||||
|
class Test1DReduce(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "reduce_sum"
|
||||||
|
self.inputs = {'X': np.random.random(20).astype("float32")}
|
||||||
|
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(['X'], 'Out')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue