parent
2d31ab5f86
commit
ed72af48ce
@ -0,0 +1,91 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/cos_sim_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using framework::Tensor;
|
||||||
|
|
||||||
|
class CosSimOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null.");
|
||||||
|
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
|
||||||
|
ctx.Input<Tensor>("Y")->dims(),
|
||||||
|
"Dimensions of Input(X) and Input(Y) must be the same.");
|
||||||
|
|
||||||
|
auto dims = ctx.Input<Tensor>("X")->dims();
|
||||||
|
ctx.Output<Tensor>("Out")->Resize({dims[0], 1});
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "The first input of cos_sim op.");
|
||||||
|
AddInput("Y", "The second input of cos_sim op.");
|
||||||
|
AddOutput("Out", "The output of cos_sim op.");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Cosine Similarity Operator.
|
||||||
|
|
||||||
|
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y))
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class CosSimOpGrad : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||||
|
"Input(Out@GRAD) should not be null.");
|
||||||
|
|
||||||
|
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||||
|
auto y_dims = ctx.Input<Tensor>("Y")->dims();
|
||||||
|
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
|
||||||
|
PADDLE_ENFORCE_EQ(x_dims, y_dims,
|
||||||
|
"Dimensions of Input(X) and Input(Y) must be the same.");
|
||||||
|
PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
|
||||||
|
"1st dimension of Out@GRAD must equal to Input(X)");
|
||||||
|
PADDLE_ENFORCE_EQ(out_dims[1], 1,
|
||||||
|
"1st dimension of Out@GRAD must equal to Input(X)");
|
||||||
|
|
||||||
|
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
||||||
|
x_grad->Resize(x_dims);
|
||||||
|
y_grad->Resize(y_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad,
|
||||||
|
ops::CosSimOpGrad);
|
||||||
|
REGISTER_OP_CPU_KERNEL(cos_sim,
|
||||||
|
ops::CosSimKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
cos_sim_grad, ops::CosSimGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,22 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/cos_sim_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(cos_sim,
|
||||||
|
ops::CosSimKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
cos_sim_grad, ops::CosSimGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,93 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class CosSimKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* x = context.Input<Tensor>("X");
|
||||||
|
auto* y = context.Input<Tensor>("Y");
|
||||||
|
auto* z = context.Output<Tensor>("Out");
|
||||||
|
|
||||||
|
z->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
auto dims = x->dims();
|
||||||
|
int size = static_cast<int>(framework::product(dims));
|
||||||
|
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
|
||||||
|
auto X = EigenMatrix<T>::From(*x, new_dims);
|
||||||
|
auto Y = EigenMatrix<T>::From(*y, new_dims);
|
||||||
|
auto Z = EigenMatrix<T>::From(*z, new_dims);
|
||||||
|
|
||||||
|
auto XY = (X * Y).sum(Eigen::array<int, 1>({1}));
|
||||||
|
auto XX = (X * X).sum(Eigen::array<int, 1>({1}));
|
||||||
|
auto YY = (Y * Y).sum(Eigen::array<int, 1>({1}));
|
||||||
|
auto place = context.GetEigenDevice<Place>();
|
||||||
|
Z.device(place) = XY / XX.sqrt() / YY.sqrt();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class CosSimGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* x = context.Input<Tensor>("X");
|
||||||
|
auto* y = context.Input<Tensor>("Y");
|
||||||
|
auto* z = context.Input<Tensor>("Out");
|
||||||
|
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto* grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
|
||||||
|
auto* grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
|
||||||
|
grad_x->mutable_data<T>(context.GetPlace());
|
||||||
|
grad_y->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
auto dims = x->dims();
|
||||||
|
int size = static_cast<int>(framework::product(dims));
|
||||||
|
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
|
||||||
|
auto X = EigenMatrix<T>::From(*x, new_dims);
|
||||||
|
auto Y = EigenMatrix<T>::From(*y, new_dims);
|
||||||
|
auto Z = EigenMatrix<T>::From(*z);
|
||||||
|
auto dX = EigenMatrix<T>::From(*grad_x, new_dims);
|
||||||
|
auto dY = EigenMatrix<T>::From(*grad_y, new_dims);
|
||||||
|
auto dZ = EigenMatrix<T>::From(*grad_z);
|
||||||
|
|
||||||
|
auto XX = (X * X).sum(Eigen::array<int, 1>({1}));
|
||||||
|
auto YY = (Y * Y).sum(Eigen::array<int, 1>({1}));
|
||||||
|
Eigen::DSizes<int, 2> bcast(1, dims[1]);
|
||||||
|
auto denominator_bcast = (XX.sqrt() * YY.sqrt()).broadcast(bcast);
|
||||||
|
auto Z_bcast = Z.broadcast(bcast);
|
||||||
|
auto dZ_bcast = dZ.broadcast(bcast);
|
||||||
|
auto place = context.GetEigenDevice<Place>();
|
||||||
|
dX.device(place) =
|
||||||
|
dZ_bcast * (Y / denominator_bcast - Z_bcast * X / XX.broadcast(bcast));
|
||||||
|
dY.device(place) =
|
||||||
|
dZ_bcast * (X / denominator_bcast - Z_bcast * Y / YY.broadcast(bcast));
|
||||||
|
// dX.device(place) = X;
|
||||||
|
// Y.device(place) = Y;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,40 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from gradient_checker import GradientChecker, create_op
|
||||||
|
from op_test_util import OpTestMeta
|
||||||
|
|
||||||
|
|
||||||
|
class TestCosSimOp(unittest.TestCase):
|
||||||
|
__metaclass__ = OpTestMeta
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.type = "cos_sim"
|
||||||
|
self.inputs = {
|
||||||
|
'X': np.random.random((32, 84)).astype("float32"),
|
||||||
|
'Y': np.random.random((32, 84)).astype("float32")
|
||||||
|
}
|
||||||
|
expect = (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / \
|
||||||
|
np.linalg.norm(self.inputs['X'], axis=1) / \
|
||||||
|
np.linalg.norm(self.inputs['Y'], axis=1)
|
||||||
|
expect = np.expand_dims(expect, 1)
|
||||||
|
self.outputs = {'Out': expect}
|
||||||
|
|
||||||
|
|
||||||
|
class CosSimGradOpTest(GradientChecker):
|
||||||
|
def test_cos_sim(self):
|
||||||
|
op = create_op("cos_sim")
|
||||||
|
#inputs = {
|
||||||
|
#'X': np.random.random((2, 2)).astype("float32"),
|
||||||
|
#'Y': np.random.random((2, 2)).astype("float32")
|
||||||
|
#}
|
||||||
|
inputs = {
|
||||||
|
'X': np.array([[0.9, 0.6], [1.9, 1.6]]).astype("float32"),
|
||||||
|
'Y': np.array([[0.7, 0.8], [1.7, 1.8]]).astype("float32")
|
||||||
|
}
|
||||||
|
print(inputs)
|
||||||
|
self.check_grad(
|
||||||
|
op, inputs, set(["X", "Y"]), "Out", max_relative_error=0.5)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue