parent
515543ab2f
commit
eea0097dcb
@ -0,0 +1,182 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Layer.h"
|
||||
#include "paddle/math/BaseMatrix.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
|
||||
namespace paddle {
|
||||
/**
|
||||
* This layer applys normalize across the channels of each sample to a
|
||||
* conv layer's output and scale the output by a group of trainable factors
|
||||
* which dimensions equal to the channel's number.
|
||||
* - Input: One and only one input layer are accepted. The input layer must be
|
||||
* be a data output layer.
|
||||
* - Output: The normalized data of the input data.
|
||||
* Reference:
|
||||
* Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
|
||||
* Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector
|
||||
*/
|
||||
|
||||
class NormalizeLayer : public Layer {
|
||||
public:
|
||||
explicit NormalizeLayer(const LayerConfig& config) : Layer(config) {}
|
||||
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
||||
|
||||
void forward(PassType passType);
|
||||
void backward(const UpdateCallback& callback);
|
||||
|
||||
protected:
|
||||
size_t channels_;
|
||||
std::unique_ptr<Weight> scale_;
|
||||
MatrixPtr scaleDiff_;
|
||||
MatrixPtr normBuffer_;
|
||||
MatrixPtr dataBuffer_;
|
||||
MatrixPtr channelBuffer_;
|
||||
MatrixPtr spatialBuffer_;
|
||||
MatrixPtr sampleBuffer_;
|
||||
};
|
||||
|
||||
REGISTER_LAYER(normalize, NormalizeLayer);
|
||||
|
||||
bool NormalizeLayer::init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) {
|
||||
Layer::init(layerMap, parameterMap);
|
||||
CHECK(parameters_[0]);
|
||||
channels_ = config_.num_filters();
|
||||
scale_.reset(new Weight(channels_, 1, parameters_[0]));
|
||||
return true;
|
||||
}
|
||||
|
||||
void NormalizeLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
auto in = getInput(0);
|
||||
MatrixPtr inV = getInputValue(0);
|
||||
|
||||
size_t batchSize = inV->getHeight();
|
||||
size_t dataDim = inV->getWidth();
|
||||
CHECK_EQ(getSize(), dataDim);
|
||||
|
||||
reserveOutput(batchSize, dataDim);
|
||||
MatrixPtr outV = getOutputValue();
|
||||
size_t spatialDim = dataDim / channels_;
|
||||
|
||||
Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_);
|
||||
Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_);
|
||||
Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_);
|
||||
Matrix::resizeOrCreate(sampleBuffer_, channels_, spatialDim, false, useGpu_);
|
||||
Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_);
|
||||
normBuffer_->zeroMem();
|
||||
spatialBuffer_->zeroMem();
|
||||
sampleBuffer_->zeroMem();
|
||||
dataBuffer_->zeroMem();
|
||||
// add eps to avoid overflow
|
||||
normBuffer_->addScalar(*normBuffer_, 1e-6);
|
||||
channelBuffer_->resetOne();
|
||||
inV->square2(*dataBuffer_);
|
||||
for (size_t i = 0; i < batchSize; i++) {
|
||||
spatialBuffer_->zeroMem();
|
||||
MatrixPtr inTmp = Matrix::create(
|
||||
inV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
|
||||
MatrixPtr dataTmp = Matrix::create(dataBuffer_->getData() + i * dataDim,
|
||||
channels_,
|
||||
spatialDim,
|
||||
false,
|
||||
useGpu_);
|
||||
MatrixPtr outTmp = Matrix::create(
|
||||
outV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
|
||||
MatrixPtr normTmp = Matrix::create(
|
||||
normBuffer_->getData() + i * spatialDim, 1, spatialDim, false, useGpu_);
|
||||
// compute norm.
|
||||
spatialBuffer_->sumCols(*dataTmp, 1, 1);
|
||||
spatialBuffer_->sqrt2(*spatialBuffer_);
|
||||
normTmp->copyFrom(*spatialBuffer_);
|
||||
sampleBuffer_->mul(*channelBuffer_, *spatialBuffer_, 1., 0.);
|
||||
sampleBuffer_->dotDiv(*inTmp, *sampleBuffer_);
|
||||
outTmp->copyFrom(*sampleBuffer_);
|
||||
|
||||
// scale the layer.
|
||||
spatialBuffer_->resetOne();
|
||||
sampleBuffer_->mul(*scale_->getW(), *spatialBuffer_, 1., 0.);
|
||||
outTmp->dotMul(*outTmp, *sampleBuffer_);
|
||||
}
|
||||
}
|
||||
|
||||
void NormalizeLayer::backward(const UpdateCallback& callback) {
|
||||
MatrixPtr inG = getInputGrad(0);
|
||||
MatrixPtr inV = getInputValue(0);
|
||||
MatrixPtr outG = getOutputGrad();
|
||||
MatrixPtr outV = getOutputValue();
|
||||
|
||||
auto in = getInput(0);
|
||||
size_t batchSize = inG->getHeight();
|
||||
size_t dataDim = inG->getWidth();
|
||||
size_t spatialDim = dataDim / channels_;
|
||||
|
||||
bool syncFlag = hl_get_sync_flag();
|
||||
dataBuffer_->dotMul(*outG, *outV);
|
||||
Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_);
|
||||
scaleDiff_->zeroMem();
|
||||
for (size_t i = 0; i < batchSize; i++) {
|
||||
spatialBuffer_->zeroMem();
|
||||
channelBuffer_->zeroMem();
|
||||
// propagate to param.
|
||||
MatrixPtr dataBufferTmp =
|
||||
Matrix::create(dataBuffer_->getData() + i * dataDim,
|
||||
channels_,
|
||||
spatialDim,
|
||||
false,
|
||||
useGpu_);
|
||||
const MatrixPtr inValueTmp = Matrix::create(
|
||||
inV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
|
||||
const MatrixPtr outGradTmp = Matrix::create(
|
||||
outG->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
|
||||
MatrixPtr inGradTmp = Matrix::create(
|
||||
inG->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
|
||||
const MatrixPtr normTmp = Matrix::create(
|
||||
normBuffer_->getData() + i * spatialDim, 1, spatialDim, false, useGpu_);
|
||||
channelBuffer_->sumRows(*dataBufferTmp, 1, 1);
|
||||
channelBuffer_->dotDiv(*channelBuffer_, *(scale_->getW()));
|
||||
// store a / scale[i] in scaleDiff_ temporary
|
||||
scaleDiff_->add(*channelBuffer_, 1.);
|
||||
|
||||
sampleBuffer_->dotMul(*inValueTmp, *outGradTmp);
|
||||
spatialBuffer_->sumCols(*sampleBuffer_, 1., 1.);
|
||||
// scale the grad
|
||||
channelBuffer_->resetOne();
|
||||
sampleBuffer_->mul(*channelBuffer_, *spatialBuffer_, 1., 0.);
|
||||
|
||||
inGradTmp->dotMul(*inValueTmp, *sampleBuffer_);
|
||||
// divide by square of norm
|
||||
spatialBuffer_->dotMul(*normTmp, *normTmp);
|
||||
sampleBuffer_->mul(*channelBuffer_, *spatialBuffer_, 1., 0.);
|
||||
inGradTmp->dotDiv(*inGradTmp, *sampleBuffer_);
|
||||
// subtract
|
||||
inGradTmp->add(*outGradTmp, -1, 1);
|
||||
// divide by norm
|
||||
sampleBuffer_->mul(*channelBuffer_, *normTmp, 1., 0.);
|
||||
inGradTmp->dotDiv(*inGradTmp, *sampleBuffer_);
|
||||
// scale the diff
|
||||
spatialBuffer_->resetOne();
|
||||
sampleBuffer_->mul(*scale_->getW(), *spatialBuffer_, 1., 0.);
|
||||
inGradTmp->dotMul(*inGradTmp, *sampleBuffer_);
|
||||
}
|
||||
// updata scale
|
||||
if (scale_->getWGrad()) scale_->getWGrad()->copyFrom(*scaleDiff_);
|
||||
hl_set_sync_flag(false);
|
||||
hl_set_sync_flag(syncFlag);
|
||||
scale_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue