add depthwise operation and depthwise conv layer

cblas_new
zlx 8 years ago
parent 211f83fa22
commit eeb17c26fd

File diff suppressed because it is too large Load Diff

@ -0,0 +1,91 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvOp.h"
namespace paddle {
/*
* imData = [input_channels, input_height, input_width]
* colData = [input_channels, filter_height, filter_width,
* output_height, output_width]
*/
template <DeviceType Device, class T>
class DepthwiseConvFunctor {
public:
void operator()(int outputSize,
const T* inputData,
const T* filterData,
int batchSize,
int outputChannels,
int outputHeight,
int outputWidth,
int filterHeight,
int filterWidth,
int strideH,
int strideW,
int paddingH,
int paddingW,
T* outputData);
};
template <DeviceType Device, class T>
class DepthwiseConvGradInputFunctor {
public:
void operator()(int inputSize,
const T* outputGrad,
const T* filterData,
int batchSize,
int outputChannels,
int outputHeight,
int outputWidth,
int inputHeight,
int inputWidth,
int filterHeight,
int filterWidth,
int strideH,
int strideW,
int paddingH,
int paddingW,
T* inputGrad);
};
template <DeviceType Device, class T>
class DepthwiseConvGradFilterFunctor {
public:
void operator()(int num_i,
int colDataSize,
const T* outputGrad,
const T* inputData,
int batchSize,
int outputChannels,
int outputHeight,
int outputWidth,
int inputHeight,
int inputWidth,
int filterHeight,
int filterWidth,
int strideH,
int strideW,
int paddingH,
int paddingW,
T* colData,
T* multiplierData,
T* filterGrad);
}; // namespace paddle
} // namespace paddle

File diff suppressed because it is too large Load Diff

@ -0,0 +1,165 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "DepthwiseConvLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace paddle {
/*
* The calculation of the exconvt(convolution transpose (deconv) operation)
* is a swap of forward and backward of the calculation of exconv.
* */
REGISTER_LAYER(depthwise_conv, DepthwiseConvLayer);
bool DepthwiseConvLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */
ExpandConvBaseLayer::init(layerMap, parameterMap);
size_t numInputs = config_.inputs_size();
inputShape_.resize(numInputs);
filterShape_.resize(numInputs);
outputShape_.resize(numInputs);
multiplierShape_.resize(numInputs);
weightMultiplier_.resize(numInputs);
for (int i = 0; i < config_.inputs_size(); i++) {
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
Matrix::resizeOrCreate(weightMultiplier_[i],
(size_t)outputH_[i] * (size_t)outputW_[i],
(size_t)1,
false,
useGpu_);
weightMultiplier_[i]->one();
createFunction(forward_,
"DepthwiseConv",
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
"DepthwiseConvGradInput",
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
"DepthwiseConvGradFilter",
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)groups_[i]));
}
return true;
}
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
backward_[2 * i]->calc(inputs, outputs)
#define BACKWARD_FILTER(i, inputs, outputs) \
backward_[2 * i + 1]->calc(inputs, outputs)
void DepthwiseConvLayer::forward(PassType passType) {
Layer::forward(passType);
size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
resetOutput(batchSize, getOutputSize());
// Calculate the shape of the input, output, and filter.
for (size_t i = 0; i < inputLayers_.size(); ++i) {
inputShape_[i] = TensorShape({(size_t)batchSize,
(size_t)channels_[i],
(size_t)imgSizeH_[i],
(size_t)imgSizeW_[i]});
multiplierShape_[i] =
TensorShape({(size_t)outputH_[i] * (size_t)outputW_[i], (size_t)1});
filterShape_[i] = TensorShape({(size_t)groups_[i],
(size_t)numFilters_ / groups_[i],
(size_t)channels_[i] / groups_[i],
(size_t)filterSizeY_[i],
(size_t)filterSize_[i]});
outputShape_[i] = TensorShape({(size_t)batchSize,
(size_t)numFilters_,
(size_t)outputH_[i],
(size_t)outputW_[i]});
}
// Calculate the output value.
for (size_t i = 0; i < inputLayers_.size(); ++i) {
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getInputValue(i), inputShape_[i]);
inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
outputs.addArg(
*getOutputValue(), outputShape_[i], i == 0 ? ASSIGN_TO : ADD_TO);
forward_[i]->calc(inputs, outputs);
}
/* add the bias-vector */
if (biases_.get()) {
if (sharedBiases_) {
addSharedBias();
} else {
addUnsharedBias();
}
}
/* activation */
forwardActivation();
}
void DepthwiseConvLayer::backward(const UpdateCallback &callback) {
backwardActivation();
MatrixPtr outGrad = getOutputGrad();
if (biases_ && biases_->getWGrad()) {
bpropBiases(outGrad);
/* Increasing the number of gradient */
biases_->getParameterPtr()->incUpdate(callback);
}
// Calculate the input grad and filter grad.
for (size_t i = 0; i < inputLayers_.size(); ++i) {
if (getInputGrad(i)) {
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getOutputGrad(), outputShape_[i]);
inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
BACKWARD_INPUT(i, inputs, outputs);
}
if (weights_[i]->getWGrad()) {
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getOutputGrad(), outputShape_[i]);
inputs.addArg(*getInputValue(i), inputShape_[i]);
inputs.addArg(*weightMultiplier_[i], multiplierShape_[i]);
// weight_multiplier
outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
BACKWARD_FILTER(i, inputs, outputs);
/* Increasing the number of gradient */
weights_[i]->getParameterPtr()->incUpdate(callback);
}
}
}
} // namespace paddle

@ -0,0 +1,52 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "ExpandConvBaseLayer.h"
#include "paddle/math/Matrix.h"
namespace paddle {
/**
* @brief A subclass of convolution layer.
* This layer expands input and use matrix multiplication to
* calculate convolution operation.
*
* The config file api is img_conv_layer.
*/
class DepthwiseConvLayer : public ExpandConvBaseLayer {
public:
explicit DepthwiseConvLayer(const LayerConfig& config)
: ExpandConvBaseLayer(config) {}
~DepthwiseConvLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
protected:
std::vector<TensorShape> inputShape_;
std::vector<TensorShape> filterShape_;
std::vector<TensorShape> outputShape_;
std::vector<TensorShape> multiplierShape_;
std::vector<MatrixPtr> weightMultiplier_;
};
} // namespace paddle
Loading…
Cancel
Save