parent
e53dc8a2e4
commit
f14a7966b0
@ -0,0 +1,82 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/sequence_softmax_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class SequenceSoftmaxOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(
|
||||
ctx.InputVar("X"), "Input(X) of SequenceSoftmaxOp should not be null.");
|
||||
PADDLE_ENFORCE_NOT_NULL(
|
||||
ctx.OutputVar("Out"),
|
||||
"Output(Out) of SequenceSoftmaxOp should not be null.");
|
||||
|
||||
auto *x = ctx.Input<framework::LoDTensor>("X");
|
||||
auto dims = x->dims();
|
||||
auto lod = x->lod();
|
||||
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
||||
PADDLE_ENFORCE_GE(
|
||||
dims[0],
|
||||
/* batch_size */ static_cast<int64_t>(lod[0].size() - 1),
|
||||
"The first dimension of Input(X) should be larger than batch size.");
|
||||
PADDLE_ENFORCE_EQ(x->numel(), static_cast<int64_t>(lod[0].size() - 1),
|
||||
"The width of each timestep in Input(X) of "
|
||||
"SequenceSoftmaxOp should be 1.");
|
||||
|
||||
dims[0] = lod[0].size() - 1;
|
||||
ctx.Output<framework::LoDTensor>("Out")->Resize({dims});
|
||||
}
|
||||
};
|
||||
|
||||
class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SequenceSoftmaxOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "(LoDTensor)");
|
||||
AddOutput("Out", "(LoDTensor)");
|
||||
AddComment(R"DOC(
|
||||
Softmax of Sequence.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SequenceSoftmaxGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(sequence_softmax, ops::SequenceSoftmaxOp,
|
||||
ops::SequenceSoftmaxOpMaker, sequence_softmax_grad,
|
||||
ops::SequenceSoftmaxGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
sequence_softmax,
|
||||
ops::SequenceSoftmaxKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
sequence_softmax_grad,
|
||||
ops::SequenceSoftmaxGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,25 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include "paddle/operators/sequence_softmax_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
sequence_softmax,
|
||||
ops::SequenceSoftmaxKernel<paddle::platform::GPUPlace, float>)
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
sequence_softmax_grad,
|
||||
ops::SequenceSoftmaxGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,62 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/operators/math/softmax_function.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
using LoDTensor = framework::LoDTensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class SequenceSoftmaxKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<LoDTensor>("X");
|
||||
auto* out = ctx.Output<LoDTensor>("Out");
|
||||
|
||||
auto lod = x->lod();
|
||||
const size_t level = lod.size();
|
||||
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
for (int i = 0; i < static_cast<int>(lod[level].size()) - 1; ++i) {
|
||||
int start_pos = static_cast<int>(lod[level][i]);
|
||||
int end_pos = static_cast<int>(lod[level][i + 1]);
|
||||
Tensor x_i = x->Slice<T>(start_pos, end_pos);
|
||||
Tensor out_i = out->Slice<T>(start_pos, end_pos);
|
||||
|
||||
math::SoftmaxFunctor<Place, T>()(&x_i, &out_i, ctx);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class SequenceSoftmaxGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,35 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def stable_softmax(x):
|
||||
"""Compute the softmax of vector x in a numerically stable way."""
|
||||
shiftx = x - np.max(x)
|
||||
exps = np.exp(shiftx)
|
||||
return exps / np.sum(exps)
|
||||
|
||||
|
||||
class TestSequenceSoftmaxOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "sequence_softmax"
|
||||
x = np.random.uniform(0.1, 1, (11, 1)).astype("float32")
|
||||
lod = [[0, 4, 5, 8, 11]]
|
||||
|
||||
out = np.zeros((11, 1)).astype("float32")
|
||||
for i in range(4):
|
||||
sub_x = x[lod[0][i]:lod[0][i + 1], :]
|
||||
sub_x = sub_x.reshape(1, lod[0][i + 1] - lod[0][i])
|
||||
sub_out = stable_softmax(sub_x)
|
||||
out[lod[0][i]:lod[0][i + 1], :] = sub_out.reshape(
|
||||
lod[0][i + 1] - lod[0][i], 1)
|
||||
|
||||
self.inputs = {"X": (x, lod)}
|
||||
self.outputs = {"Out": out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue