【paddle.fleet】parameter_server_optimizer support auto_strategy (#26838)
* test=develop, add ps autout_timeout_modifed
parent
4c70e31ab5
commit
f2d68d3ed5
@ -0,0 +1,143 @@
|
|||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import paddle
|
||||||
|
import os
|
||||||
|
import paddle.distributed.fleet.base.role_maker as role_maker
|
||||||
|
import time
|
||||||
|
|
||||||
|
|
||||||
|
class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
os.environ["PADDLE_PSERVER_NUMS"] = "2"
|
||||||
|
os.environ["PADDLE_TRAINERS_NUM"] = "2"
|
||||||
|
os.environ["POD_IP"] = "127.0.0.1"
|
||||||
|
os.environ["PADDLE_PORT"] = "36001"
|
||||||
|
os.environ["PADDLE_TRAINER_ID"] = "0"
|
||||||
|
os.environ["PADDLE_TRAINERS_NUM"] = "2"
|
||||||
|
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
|
||||||
|
"127.0.0.1:36001,127.0.0.2:36001"
|
||||||
|
|
||||||
|
def test_a_sync_optimizer1(self):
|
||||||
|
os.environ["TRAINING_ROLE"] = "TRAINER"
|
||||||
|
import paddle.distributed.fleet as fleet
|
||||||
|
|
||||||
|
main_program = paddle.fluid.Program()
|
||||||
|
startup_program = paddle.fluid.Program()
|
||||||
|
|
||||||
|
paddle.fluid.framework.switch_main_program(main_program)
|
||||||
|
paddle.fluid.framework.switch_startup_program(startup_program)
|
||||||
|
|
||||||
|
fleet.init(role_maker.PaddleCloudRoleMaker())
|
||||||
|
input_x = paddle.fluid.layers.data(
|
||||||
|
name="x", shape=[32], dtype='float32')
|
||||||
|
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
|
||||||
|
|
||||||
|
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||||
|
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||||
|
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
|
||||||
|
cost = paddle.fluid.layers.cross_entropy(
|
||||||
|
input=prediction, label=input_y)
|
||||||
|
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||||
|
|
||||||
|
strategy = paddle.distributed.fleet.DistributedStrategy()
|
||||||
|
strategy.auto = True
|
||||||
|
optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
|
||||||
|
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
||||||
|
optimizer.minimize(avg_cost)
|
||||||
|
|
||||||
|
self.assertTrue(optimizer.user_defined_strategy.a_sync)
|
||||||
|
a_sync_configs = optimizer.user_defined_strategy.a_sync_configs
|
||||||
|
self.assertTrue(a_sync_configs['k_steps'] == 0)
|
||||||
|
|
||||||
|
def test_a_sync_optimizer2(self):
|
||||||
|
os.environ["TRAINING_ROLE"] = "TRAINER"
|
||||||
|
import paddle.distributed.fleet as fleet
|
||||||
|
|
||||||
|
main_program = paddle.fluid.Program()
|
||||||
|
startup_program = paddle.fluid.Program()
|
||||||
|
|
||||||
|
paddle.fluid.framework.switch_main_program(main_program)
|
||||||
|
paddle.fluid.framework.switch_startup_program(startup_program)
|
||||||
|
|
||||||
|
fleet.init(role_maker.PaddleCloudRoleMaker())
|
||||||
|
input_x = paddle.fluid.layers.data(
|
||||||
|
name="x", shape=[32], dtype='float32')
|
||||||
|
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
|
||||||
|
|
||||||
|
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||||
|
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||||
|
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
|
||||||
|
cost = paddle.fluid.layers.cross_entropy(
|
||||||
|
input=prediction, label=input_y)
|
||||||
|
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||||
|
|
||||||
|
strategy = paddle.distributed.fleet.DistributedStrategy()
|
||||||
|
strategy.auto = True
|
||||||
|
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
|
||||||
|
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
||||||
|
optimizer.minimize(avg_cost)
|
||||||
|
|
||||||
|
self.assertTrue(optimizer.user_defined_strategy.a_sync)
|
||||||
|
a_sync_configs = optimizer.user_defined_strategy.a_sync_configs
|
||||||
|
self.assertTrue(a_sync_configs['k_steps'] == 800)
|
||||||
|
|
||||||
|
def test_a_sync_optimizer3(self):
|
||||||
|
os.environ["TRAINING_ROLE"] = "TRAINER"
|
||||||
|
import paddle.distributed.fleet as fleet
|
||||||
|
|
||||||
|
main_program = paddle.fluid.Program()
|
||||||
|
startup_program = paddle.fluid.Program()
|
||||||
|
|
||||||
|
paddle.fluid.framework.switch_main_program(main_program)
|
||||||
|
paddle.fluid.framework.switch_startup_program(startup_program)
|
||||||
|
|
||||||
|
fleet.init(role_maker.PaddleCloudRoleMaker())
|
||||||
|
input_x = paddle.fluid.layers.data(
|
||||||
|
name="x",
|
||||||
|
shape=[-1, 1],
|
||||||
|
dtype="int64",
|
||||||
|
lod_level=1,
|
||||||
|
append_batch_size=False)
|
||||||
|
x_embedding = paddle.fluid.layers.embedding(
|
||||||
|
is_distributed=False,
|
||||||
|
input=input_x,
|
||||||
|
size=[1000000000, 100000],
|
||||||
|
param_attr=paddle.fluid.ParamAttr(
|
||||||
|
name="embedding",
|
||||||
|
initializer=paddle.fluid.initializer.Constant(value=0.01)),
|
||||||
|
is_sparse=True)
|
||||||
|
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
|
||||||
|
|
||||||
|
fc_1 = paddle.fluid.layers.fc(input=x_embedding, size=64, act='tanh')
|
||||||
|
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||||
|
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
|
||||||
|
cost = paddle.fluid.layers.cross_entropy(
|
||||||
|
input=prediction, label=input_y)
|
||||||
|
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||||
|
|
||||||
|
strategy = paddle.distributed.fleet.DistributedStrategy()
|
||||||
|
strategy.auto = True
|
||||||
|
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
|
||||||
|
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
||||||
|
optimizer.minimize(avg_cost)
|
||||||
|
|
||||||
|
self.assertTrue(optimizer.user_defined_strategy.a_sync)
|
||||||
|
a_sync_configs = optimizer.user_defined_strategy.a_sync_configs
|
||||||
|
self.assertTrue(a_sync_configs['k_steps'] == 0)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue