Fix pow api type error with python side method, merge elementwise_pow and pow. (#26163)
	
		
	
				
					
				
			As the titlerevert-26856-strategy_example2
							parent
							
								
									e4cc6a28b0
								
							
						
					
					
						commit
						f311d3c1cf
					
				@ -0,0 +1,239 @@
 | 
				
			||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
from __future__ import print_function
 | 
				
			||||
import paddle
 | 
				
			||||
import paddle.tensor as tensor
 | 
				
			||||
import paddle.fluid as fluid
 | 
				
			||||
from paddle.static import Program, program_guard
 | 
				
			||||
import numpy as np
 | 
				
			||||
import unittest
 | 
				
			||||
 | 
				
			||||
DYNAMIC = 1
 | 
				
			||||
STATIC = 2
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def _run_power(mode, x, y):
 | 
				
			||||
    # dynamic mode
 | 
				
			||||
    if mode == DYNAMIC:
 | 
				
			||||
        paddle.disable_static()
 | 
				
			||||
        # y is scalar
 | 
				
			||||
        if isinstance(y, (int, float)):
 | 
				
			||||
            x_ = paddle.to_tensor(x)
 | 
				
			||||
            y_ = y
 | 
				
			||||
            res = paddle.pow(x_, y_)
 | 
				
			||||
            return res.numpy()
 | 
				
			||||
        # y is tensor
 | 
				
			||||
        else:
 | 
				
			||||
            x_ = paddle.to_tensor(x)
 | 
				
			||||
            y_ = paddle.to_tensor(y)
 | 
				
			||||
            res = paddle.pow(x_, y_)
 | 
				
			||||
            return res.numpy()
 | 
				
			||||
    # static mode
 | 
				
			||||
    elif mode == STATIC:
 | 
				
			||||
        paddle.enable_static()
 | 
				
			||||
        # y is scalar
 | 
				
			||||
        if isinstance(y, (int, float)):
 | 
				
			||||
            with program_guard(Program(), Program()):
 | 
				
			||||
                x_ = paddle.static.data(name="x", shape=x.shape, dtype=x.dtype)
 | 
				
			||||
                y_ = y
 | 
				
			||||
                res = paddle.pow(x_, y_)
 | 
				
			||||
                place = fluid.CPUPlace()
 | 
				
			||||
                exe = fluid.Executor(place)
 | 
				
			||||
                outs = exe.run(feed={'x': x}, fetch_list=[res])
 | 
				
			||||
                return outs[0]
 | 
				
			||||
        # y is tensor
 | 
				
			||||
        else:
 | 
				
			||||
            with program_guard(Program(), Program()):
 | 
				
			||||
                x_ = paddle.static.data(name="x", shape=x.shape, dtype=x.dtype)
 | 
				
			||||
                y_ = paddle.static.data(name="y", shape=y.shape, dtype=y.dtype)
 | 
				
			||||
                res = paddle.pow(x_, y_)
 | 
				
			||||
                place = fluid.CPUPlace()
 | 
				
			||||
                exe = fluid.Executor(place)
 | 
				
			||||
                outs = exe.run(feed={'x': x, 'y': y}, fetch_list=[res])
 | 
				
			||||
                return outs[0]
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestPowerAPI(unittest.TestCase):
 | 
				
			||||
    """TestPowerAPI."""
 | 
				
			||||
 | 
				
			||||
    def test_power(self):
 | 
				
			||||
        """test_power."""
 | 
				
			||||
        np.random.seed(7)
 | 
				
			||||
        # test 1-d float tensor ** float scalar
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = np.random.rand() * 10
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d float tensor ** int scalar
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = int(np.random.rand() * 10)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.int64)
 | 
				
			||||
        y = int(np.random.rand() * 10)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d float tensor ** 1-d float tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d float tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.int64)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d float tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.int64)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.int64)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.int64)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.int32)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.int32)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.int64)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.int32)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.int32)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.int64)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float32)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.float32)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.float32)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.int32)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test 1-d int tensor ** 1-d int tensor
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float32)
 | 
				
			||||
        y = (np.random.rand(*dims) * 10).astype(np.int64)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
        # test broadcast
 | 
				
			||||
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
 | 
				
			||||
                np.random.randint(5, 10))
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = (np.random.rand(dims[-1]) * 10).astype(np.float64)
 | 
				
			||||
        res = _run_power(DYNAMIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
        res = _run_power(STATIC, x, y)
 | 
				
			||||
        self.assertTrue(np.allclose(res, np.power(x, y)))
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestPowerError(unittest.TestCase):
 | 
				
			||||
    """TestPowerError."""
 | 
				
			||||
 | 
				
			||||
    def test_errors(self):
 | 
				
			||||
        """test_errors."""
 | 
				
			||||
        np.random.seed(7)
 | 
				
			||||
 | 
				
			||||
        # test dynamic computation graph: inputs must be broadcastable
 | 
				
			||||
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
 | 
				
			||||
                np.random.randint(5, 10))
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = (np.random.rand(dims[-1] + 1) * 10).astype(np.float64)
 | 
				
			||||
        self.assertRaises(fluid.core.EnforceNotMet, _run_power, DYNAMIC, x, y)
 | 
				
			||||
        self.assertRaises(fluid.core.EnforceNotMet, _run_power, STATIC, x, y)
 | 
				
			||||
 | 
				
			||||
        # test dynamic computation graph: inputs must be broadcastable
 | 
				
			||||
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
 | 
				
			||||
                np.random.randint(5, 10))
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = (np.random.rand(dims[-1] + 1) * 10).astype(np.int8)
 | 
				
			||||
        self.assertRaises(TypeError, paddle.pow, x, y)
 | 
				
			||||
 | 
				
			||||
        # test 1-d float tensor ** int string
 | 
				
			||||
        dims = (np.random.randint(200, 300), )
 | 
				
			||||
        x = (np.random.rand(*dims) * 10).astype(np.float64)
 | 
				
			||||
        y = int(np.random.rand() * 10)
 | 
				
			||||
        self.assertRaises(TypeError, paddle.pow, x, str(y))
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
if __name__ == '__main__':
 | 
				
			||||
    unittest.main()
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue