parent
ccb553fec4
commit
f3755dd455
@ -0,0 +1,112 @@
|
|||||||
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle.trainer_config_helpers as conf_helps
|
||||||
|
from paddle.trainer_config_helpers.config_parser_utils import \
|
||||||
|
parse_network_config as __parse__
|
||||||
|
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
|
||||||
|
import collections
|
||||||
|
|
||||||
|
|
||||||
|
class Layer(object):
|
||||||
|
def __init__(self, name, parent_layer):
|
||||||
|
assert isinstance(parent_layer, dict)
|
||||||
|
assert isinstance(name, basestring)
|
||||||
|
self.name = name
|
||||||
|
self.__parent_layer__ = parent_layer
|
||||||
|
|
||||||
|
def to_proto(self, context):
|
||||||
|
"""
|
||||||
|
function to set proto attribute
|
||||||
|
"""
|
||||||
|
kwargs = dict()
|
||||||
|
for param_name in self.__parent_layer__:
|
||||||
|
if not isinstance(self.__parent_layer__[param_name],
|
||||||
|
collections.Sequence):
|
||||||
|
param_value = self.__parent_layer__[param_name].to_proto(
|
||||||
|
context=context)
|
||||||
|
else:
|
||||||
|
param_value = map(lambda x: x.to_proto(context=context),
|
||||||
|
self.__parent_layer__[param_name])
|
||||||
|
kwargs[param_name] = param_value
|
||||||
|
|
||||||
|
if self.name not in context:
|
||||||
|
context[self.name] = self.to_proto_impl(**kwargs)
|
||||||
|
return context[self.name]
|
||||||
|
|
||||||
|
def to_proto_impl(self, **kwargs):
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
|
||||||
|
def parse_network(*outputs):
|
||||||
|
def __real_func__():
|
||||||
|
context = dict()
|
||||||
|
real_output = [each.to_proto(context=context) for each in outputs]
|
||||||
|
conf_helps.outputs(real_output)
|
||||||
|
|
||||||
|
return __parse__(__real_func__)
|
||||||
|
|
||||||
|
|
||||||
|
def __convert__(method_name, name_prefix, parent_names):
|
||||||
|
if name_prefix is not None:
|
||||||
|
wrapper = wrap_name_default(name_prefix=name_prefix)
|
||||||
|
else:
|
||||||
|
wrapper = None
|
||||||
|
|
||||||
|
class __Impl__(Layer):
|
||||||
|
def __init__(self, name=None, **kwargs):
|
||||||
|
parent_layers = dict()
|
||||||
|
other_kwargs = dict()
|
||||||
|
for pname in parent_names:
|
||||||
|
parent_layers[pname] = kwargs[pname]
|
||||||
|
|
||||||
|
for key in kwargs.keys():
|
||||||
|
if key not in parent_names:
|
||||||
|
other_kwargs[key] = kwargs[key]
|
||||||
|
|
||||||
|
super(__Impl__, self).__init__(name, parent_layers)
|
||||||
|
self.__other_kwargs__ = other_kwargs
|
||||||
|
|
||||||
|
if wrapper is not None:
|
||||||
|
__init__ = wrapper(__init__)
|
||||||
|
|
||||||
|
def to_proto_impl(self, **kwargs):
|
||||||
|
args = dict()
|
||||||
|
for each in kwargs:
|
||||||
|
args[each] = kwargs[each]
|
||||||
|
for each in self.__other_kwargs__:
|
||||||
|
args[each] = self.__other_kwargs__[each]
|
||||||
|
return getattr(conf_helps, method_name)(name=self.name, **args)
|
||||||
|
|
||||||
|
return __Impl__
|
||||||
|
|
||||||
|
|
||||||
|
data_layer = __convert__('data_layer', None, [])
|
||||||
|
fc_layer = __convert__('fc_layer', name_prefix='fc', parent_names=['input'])
|
||||||
|
classification_cost = __convert__(
|
||||||
|
'classification_cost',
|
||||||
|
name_prefix='classification_cost',
|
||||||
|
parent_names=['input', 'label'])
|
||||||
|
|
||||||
|
__all__ = ['data_layer', 'fc_layer', 'classification_cost', 'parse_network']
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
data = data_layer(name='pixel', size=784)
|
||||||
|
hidden = fc_layer(input=data, size=100, act=conf_helps.SigmoidActivation())
|
||||||
|
predict = fc_layer(
|
||||||
|
input=[hidden, data], size=10, act=conf_helps.SoftmaxActivation())
|
||||||
|
cost = classification_cost(
|
||||||
|
input=predict, label=data_layer(
|
||||||
|
name='label', size=10))
|
||||||
|
print parse_network(cost)
|
Loading…
Reference in new issue