parent
ca3db07028
commit
f3a23b6840
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,157 @@
|
||||
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "MKLDNNLayer.h"
|
||||
#include "mkldnn.hpp"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* @brief A subclass of MKLDNNLayer conv layer.
|
||||
*
|
||||
* The config file api is mkldnn_conv
|
||||
*/
|
||||
class MKLDNNConvLayer : public MKLDNNLayer {
|
||||
protected:
|
||||
// padding height and width
|
||||
int ph_, pw_;
|
||||
// stride height and width
|
||||
int sh_, sw_;
|
||||
// dilation height and width
|
||||
int dh_, dw_;
|
||||
// filter(kenerl) height and width
|
||||
int fh_, fw_;
|
||||
// group number
|
||||
int gp_;
|
||||
|
||||
// in backward data the format is different with wgtVal_
|
||||
MKLDNNMatrixPtr wgtValBwdData_;
|
||||
std::shared_ptr<mkldnn::reorder> cvtWgtVal_;
|
||||
|
||||
// save forward primitive_desc use for backward
|
||||
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> fwdPD_;
|
||||
|
||||
// MKLDNNMatrixPtr with cpu device for conversion between MKLDNN device
|
||||
MKLDNNMatrixPtr cpuInVal_;
|
||||
MKLDNNMatrixPtr cpuInGrad_;
|
||||
MKLDNNMatrixPtr cpuOutVal_;
|
||||
MKLDNNMatrixPtr cpuOutGrad_;
|
||||
std::shared_ptr<mkldnn::reorder> cvtInVal_;
|
||||
std::shared_ptr<mkldnn::reorder> cvtInGrad_;
|
||||
std::shared_ptr<mkldnn::reorder> cvtOutVal_;
|
||||
std::shared_ptr<mkldnn::reorder> cvtOutGrad_;
|
||||
|
||||
// if has already init the weight
|
||||
bool hasInitedWgt_;
|
||||
|
||||
// True by default. This impact the calculation of output size.
|
||||
// For example:
|
||||
// - input(+padding): 0123456789
|
||||
// - imageSize(+padding) = 10;
|
||||
// - filterSize = 3;
|
||||
// - stride = 2;
|
||||
// - caffeMode_ is true:
|
||||
// - output: (012), (234), (456), (678)
|
||||
// - outputSize = 4;
|
||||
// - caffeMode_ is false:
|
||||
// - output: (012), (234), (456), (678), (9)
|
||||
// - outputSize = 5;
|
||||
bool caffeMode_;
|
||||
|
||||
// weight and bias
|
||||
std::unique_ptr<Weight> weight_;
|
||||
std::unique_ptr<Weight> biases_;
|
||||
|
||||
public:
|
||||
explicit MKLDNNConvLayer(const LayerConfig& config)
|
||||
: MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {}
|
||||
|
||||
~MKLDNNConvLayer() {}
|
||||
|
||||
bool init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) override;
|
||||
|
||||
void reshape(
|
||||
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
|
||||
|
||||
void resetFwd(std::vector<mkldnn::primitive>& pipeline,
|
||||
MKLDNNMatrixPtr& in,
|
||||
MKLDNNMatrixPtr& wgt,
|
||||
MKLDNNMatrixPtr& bias,
|
||||
MKLDNNMatrixPtr& out) override;
|
||||
|
||||
void resetBwd(std::vector<mkldnn::primitive>& pipeline,
|
||||
MKLDNNMatrixPtr& in,
|
||||
MKLDNNMatrixPtr& wgt,
|
||||
MKLDNNMatrixPtr& bias,
|
||||
MKLDNNMatrixPtr& out) override;
|
||||
|
||||
void updateInputData() override;
|
||||
|
||||
void updateWeights(const UpdateCallback& callback) override;
|
||||
|
||||
void convertWeightsFromPaddle() override;
|
||||
|
||||
void convertWeightsToPaddle() override;
|
||||
|
||||
protected:
|
||||
void printSizeInfo() override {
|
||||
MKLDNNLayer::printSizeInfo();
|
||||
VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
|
||||
<< ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
|
||||
<< ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_;
|
||||
}
|
||||
|
||||
void printValueFormatFlow() override {
|
||||
if (cpuInVal_) {
|
||||
VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>";
|
||||
}
|
||||
MKLDNNLayer::printValueFormatFlow();
|
||||
if (cpuOutVal_) {
|
||||
VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat();
|
||||
}
|
||||
}
|
||||
void printGradFormatFlow() override {
|
||||
if (cpuInGrad_) {
|
||||
VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<";
|
||||
}
|
||||
MKLDNNLayer::printGradFormatFlow();
|
||||
if (cpuOutGrad_) {
|
||||
VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* get padding_r according to
|
||||
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
|
||||
* test_convolution_forward_common.hpp
|
||||
* @note: mkldnn dilation start from 0 while paddle start from 1
|
||||
*/
|
||||
mkldnn::memory::dims getPaddingR() const {
|
||||
mkldnn::memory::dims padR = {ph_, pw_};
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) {
|
||||
++padR[0];
|
||||
}
|
||||
if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) {
|
||||
++padR[1];
|
||||
}
|
||||
}
|
||||
return padR;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue