|
|
|
@ -36,7 +36,7 @@ class DataFeederTest(unittest.TestCase):
|
|
|
|
|
def compare(input):
|
|
|
|
|
feeder = DataFeeder([('image', data_type.dense_vector(784))],
|
|
|
|
|
{'image': 0})
|
|
|
|
|
arg = feeder([input])
|
|
|
|
|
arg = feeder(input)
|
|
|
|
|
output = arg.getSlotValue(0).copyToNumpyMat()
|
|
|
|
|
input = np.array(input, dtype='float32')
|
|
|
|
|
self.assertAlmostEqual(input.all(), output.all())
|
|
|
|
@ -46,13 +46,17 @@ class DataFeederTest(unittest.TestCase):
|
|
|
|
|
dim = 784
|
|
|
|
|
data = []
|
|
|
|
|
for i in xrange(batch_size):
|
|
|
|
|
data.append(self.dense_reader(784))
|
|
|
|
|
each_sample = []
|
|
|
|
|
each_sample.append(self.dense_reader(dim))
|
|
|
|
|
data.append(each_sample)
|
|
|
|
|
compare(data)
|
|
|
|
|
|
|
|
|
|
# test list
|
|
|
|
|
data = []
|
|
|
|
|
for i in xrange(batch_size):
|
|
|
|
|
data.append(self.dense_reader(784).tolist())
|
|
|
|
|
each_sample = []
|
|
|
|
|
each_sample.append(self.dense_reader(dim).tolist())
|
|
|
|
|
data.append(each_sample)
|
|
|
|
|
compare(data)
|
|
|
|
|
|
|
|
|
|
def test_sparse_binary(self):
|
|
|
|
@ -60,7 +64,9 @@ class DataFeederTest(unittest.TestCase):
|
|
|
|
|
batch_size = 32
|
|
|
|
|
data = []
|
|
|
|
|
for i in xrange(batch_size):
|
|
|
|
|
data.append([self.sparse_binary_reader(dim, 50)])
|
|
|
|
|
each_sample = []
|
|
|
|
|
each_sample.append(self.sparse_binary_reader(dim, 50))
|
|
|
|
|
data.append(each_sample)
|
|
|
|
|
feeder = DataFeeder([('input', data_type.sparse_binary_vector(dim))],
|
|
|
|
|
{'input': 0})
|
|
|
|
|
arg = feeder(data)
|
|
|
|
@ -76,11 +82,13 @@ class DataFeederTest(unittest.TestCase):
|
|
|
|
|
w = []
|
|
|
|
|
data = []
|
|
|
|
|
for dat in xrange(batch_size):
|
|
|
|
|
each_sample = []
|
|
|
|
|
a = self.sparse_binary_reader(dim, 40, non_empty=True)
|
|
|
|
|
b = self.dense_reader(len(a)).tolist()
|
|
|
|
|
v.append(a)
|
|
|
|
|
w.append(b[0])
|
|
|
|
|
data.append([zip(a, b)])
|
|
|
|
|
each_sample.append(zip(a, b))
|
|
|
|
|
data.append(each_sample)
|
|
|
|
|
|
|
|
|
|
feeder = DataFeeder([('input', data_type.sparse_vector(dim))],
|
|
|
|
|
{'input': 0})
|
|
|
|
@ -95,7 +103,9 @@ class DataFeederTest(unittest.TestCase):
|
|
|
|
|
batch_size = 32
|
|
|
|
|
index = []
|
|
|
|
|
for i in xrange(batch_size):
|
|
|
|
|
index.append([np.random.randint(dim)])
|
|
|
|
|
each_sample = []
|
|
|
|
|
each_sample.append(np.random.randint(dim))
|
|
|
|
|
index.append(each_sample)
|
|
|
|
|
feeder = DataFeeder([('input', data_type.integer_value(dim))],
|
|
|
|
|
{'input': 0})
|
|
|
|
|
arg = feeder(index)
|
|
|
|
|