|
|
|
@ -14,6 +14,7 @@
|
|
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
|
#include <vector>
|
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
@ -22,6 +23,37 @@
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
typename std::enable_if<std::is_same<T, bool>::value>::type CopyVecotorToTensor(
|
|
|
|
|
const char* value_name, framework::Tensor* out,
|
|
|
|
|
const framework::ExecutionContext& ctx) {
|
|
|
|
|
// If attribute value dtype is vector<bool>, it will be converted to
|
|
|
|
|
// vector<int>.
|
|
|
|
|
// at the same time, we can not use vector<bool> to hold the value, because
|
|
|
|
|
// the c++ use bit value to replace byte value.
|
|
|
|
|
auto values = ctx.Attr<std::vector<int>>(value_name);
|
|
|
|
|
framework::TensorFromVector(values, ctx.device_context(), out);
|
|
|
|
|
|
|
|
|
|
// use the array to replace to vector
|
|
|
|
|
bool* array_ptr = new T[values.size()];
|
|
|
|
|
for (unsigned int i = 0; i < values.size(); i++) {
|
|
|
|
|
array_ptr[i] = static_cast<T>(values[i]);
|
|
|
|
|
}
|
|
|
|
|
framework::TensorFromArray(array_ptr, values.size(), ctx.device_context(),
|
|
|
|
|
out);
|
|
|
|
|
delete[] array_ptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
typename std::enable_if<!std::is_same<T, bool>::value>::type
|
|
|
|
|
CopyVecotorToTensor(const char* value_name, framework::Tensor* out,
|
|
|
|
|
const framework::ExecutionContext& ctx) {
|
|
|
|
|
auto values = ctx.Attr<std::vector<T>>(value_name);
|
|
|
|
|
framework::TensorFromVector(values, ctx.device_context(), out);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class AssignValueKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
@ -31,6 +63,9 @@ class AssignValueKernel : public framework::OpKernel<T> {
|
|
|
|
|
int dtype = ctx.Attr<int>("dtype");
|
|
|
|
|
const char* value_name = nullptr;
|
|
|
|
|
switch (dtype) {
|
|
|
|
|
case framework::proto::VarType::BOOL:
|
|
|
|
|
value_name = "bool_values";
|
|
|
|
|
break;
|
|
|
|
|
case framework::proto::VarType::INT32:
|
|
|
|
|
value_name = "int32_values";
|
|
|
|
|
break;
|
|
|
|
@ -44,8 +79,7 @@ class AssignValueKernel : public framework::OpKernel<T> {
|
|
|
|
|
PADDLE_THROW("Unsupported dtype for assign_value_op: %d", dtype);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
auto values = ctx.Attr<std::vector<T>>(value_name);
|
|
|
|
|
framework::TensorFromVector(values, ctx.device_context(), out);
|
|
|
|
|
CopyVecotorToTensor<T>(value_name, out, ctx);
|
|
|
|
|
out->Resize(framework::make_ddim(shape));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|