Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into bi_tensor_prod_op

mobile_baidu
peterzhang2029 7 years ago
commit f5cb52ca3e

1
.gitignore vendored

@ -28,3 +28,4 @@ cmake_install.cmake
paddle/.timestamp
python/paddlepaddle.egg-info/
paddle/pybind/pybind.h
python/paddle/v2/framework/tests/tmp/*

@ -30,6 +30,7 @@ addons:
- automake
- libtool
- ccache
ssh_known_hosts: 52.76.173.135
before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
@ -42,6 +43,14 @@ script:
- |
timeout 2580 paddle/scripts/travis/${JOB}.sh # 43min timeout
RESULT=$?; if [ $RESULT -eq 0 ] || [ $RESULT -eq 142 ]; then true; else false; fi;
- |
if [[ "$JOB" != "build_doc" ]]; then exit 0; fi;
if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi;
if [[ "$TRAVIS_BRANCH" != "develop" && ! "$TRAVIS_BRANCH" =~ ^v[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then exit 0; fi;
export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/master/scripts/deploy/deploy_docs.sh
export DOCS_DIR=`pwd`
cd ..
curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH $DOCS_DIR $DOCS_DIR/build/doc
notifications:
email:
on_success: change

@ -127,6 +127,7 @@ include(external/warpctc) # download, build, install warpctc
include(external/any) # download libn::any
include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/nccl)
include(cudnn) # set cudnn libraries, must before configure
include(configure) # add paddle env configuration
@ -159,7 +160,7 @@ set(EXTERNAL_LIBS
if(WITH_GPU)
list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY})
if(NOT WITH_DSO)
list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY})
list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY} ${NCCL_LIBRARY})
endif(NOT WITH_DSO)
endif(WITH_GPU)

@ -1 +1,157 @@
./doc/howto/dev/contribute_to_paddle_en.md
# Contribute Code
We sincerely appreciate your contribution. This document explains our workflow and work style.
## Workflow
PaddlePaddle uses this [Git branching model](http://nvie.com/posts/a-successful-git-branching-model/). The following steps guide usual contributions.
1. Fork
Our development community has been growing fastly; it doesn't make sense for everyone to write into the official repo. So, please file Pull Requests from your fork. To make a fork, just head over to the GitHub page and click the ["Fork" button](https://help.github.com/articles/fork-a-repo/).
1. Clone
To make a copy of your fork to your local computers, please run
```bash
git clone https://github.com/your-github-account/paddle
cd paddle
```
1. Create the local feature branch
For daily works like adding a new feature or fixing a bug, please open your feature branch before coding:
```bash
git checkout -b my-cool-stuff
```
1. Commit
Before issuing your first `git commit` command, please install [`pre-commit`](http://pre-commit.com/) by running the following commands:
```bash
pip install pre-commit
pre-commit install
```
Our pre-commit configuration requires clang-format 3.8 for auto-formating C/C++ code and yapf for Python.
Once installed, `pre-commit` checks the style of code and documentation in every commit. We will see something like the following when you run `git commit`:
```
➜ git commit
CRLF end-lines remover...............................(no files to check)Skipped
yapf.................................................(no files to check)Skipped
Check for added large files..............................................Passed
Check for merge conflicts................................................Passed
Check for broken symlinks................................................Passed
Detect Private Key...................................(no files to check)Skipped
Fix End of Files.....................................(no files to check)Skipped
clang-formater.......................................(no files to check)Skipped
[my-cool-stuff c703c041] add test file
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 233
```
1. Build and test
Users can build PaddlePaddle natively on Linux and Mac OS X. But to unify the building environment and to make it easy for debugging, the recommended way is [using Docker](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/build_en.md).
1. Keep pulling
An experienced Git user pulls from the official repo often -- daily or even hourly, so they notice conflicts with others work early, and it's easier to resolve smaller conflicts.
```bash
git remote add upstream https://github.com/PaddlePaddle/Paddle
git pull upstream develop
```
1. Push and file a pull request
You can "push" your local work into your forked repo:
```bash
git push origin my-cool-stuff
```
The push allows you to create a pull request, requesting owners of this [official repo](https://github.com/PaddlePaddle/Paddle) to pull your change into the official one.
To create a pull request, please follow [these steps](https://help.github.com/articles/creating-a-pull-request/).
If your change is for fixing an issue, please write ["Fixes <issue-URL>"](https://help.github.com/articles/closing-issues-using-keywords/) in the description section of your pull request. Github would close the issue when the owners merge your pull request.
Please remember to specify some reviewers for your pull request. If you don't know who are the right ones, please follow Github's recommendation.
1. Delete local and remote branches
To keep your local workspace and your fork clean, you might want to remove merged branches:
```bash
git push origin :my-cool-stuff
git checkout develop
git pull upstream develop
git branch -d my-cool-stuff
```
### Code Review
- Please feel free to ping your reviewers by sending them the URL of your pull request via IM or email. Please do this after your pull request passes the CI.
- Please answer reviewers' every comment. If you are to follow the comment, please write "Done"; please give a reason otherwise.
- If you don't want your reviewers to get overwhelmed by email notifications, you might reply their comments by [in a batch](https://help.github.com/articles/reviewing-proposed-changes-in-a-pull-request/).
- Reduce the unnecessary commits. Some developers commit often. It is recommended to append a sequence of small changes into one commit by running `git commit --amend` instead of `git commit`.
## Coding Standard
### Code Style
Our C/C++ code follows the [Google style guide](http://google.github.io/styleguide/cppguide.html).
Our Python code follows the [PEP8 style guide](https://www.python.org/dev/peps/pep-0008/).
Our build process helps to check the code style. In [`build.sh`](https://github.com/PaddlePaddle/Paddle/blob/b84e8226514b8bb4405c3c28e54aa5077193d179/paddle/scripts/docker/build.sh#L42), the entry point of our [builder Docker image](https://github.com/PaddlePaddle/Paddle/blob/b84e8226514b8bb4405c3c28e54aa5077193d179/Dockerfile#L88), the CMake argument `WITH_STYLE_CHECK` is set to `ON` by default. This flag is on
Please install pre-commit, which automatically reformat the changes to C/C++ and Python code whenever we run `git commit`. To check the whole codebase, we can run the command `pre-commit run -a`, as in the [`check_style.sh` file](https://github.com/PaddlePaddle/Paddle/blob/b84e8226514b8bb4405c3c28e54aa5077193d179/paddle/scripts/travis/check_style.sh#L30), which is invoked by [our Travis CI configuration](https://github.com/PaddlePaddle/Paddle/blob/b84e8226514b8bb4405c3c28e54aa5077193d179/.travis.yml#L43).
### Unit Tests
Please remember to add related unit tests.
- For C/C++ code, please follow [`google-test` Primer](https://github.com/google/googletest/blob/master/googletest/docs/Primer.md).
- For Python code, please use [Python's standard `unittest` package](http://pythontesting.net/framework/unittest/unittest-introduction/).
### Writing Logs
We use [glog](https://github.com/google/glog) for logging in our C/C++ code.
For general information, please use `LOG`. For debug information, please use [`VLOG`](http://htmlpreview.github.io/?https://github.com/google/glog/blob/master/doc/glog.html#verbose). The reason is at [here](https://groups.google.com/a/chromium.org/d/msg/chromium-dev/3NDNd1KzXeY/AZKMMx37fdQJ).
`VLOG` requires a *verbose level* parameter. For example:
```c++
VLOG(3) << "Operator FC is taking " << num_inputs << "inputs."
```
When we run a PaddlePaddle application or test, we can specify a verbose threshold. For example:
```bash
GLOG_vmodule=buddy_allocator=2 \
GLOG_v=10 \
python \
../python/paddle/v2/framework/tests/test_recurrent_op.py
```
This will enable VLOG messages generated by `buddy_allocator.{h,cc}` and in the verbose range of 0 to 3, so you will see above example VLOG message, which is in level 3. This suggests that we output overall messages in lower verbose levels, so they display with higher probability. When coding C++, please follow the verbose level convention as follows:
- verbose level 1: [framework](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework)
- verbose level 3: [operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)
- verbose level 5: [memory](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory), [platform](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/platform)
- verbose level 7: [math](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/math)

@ -0,0 +1,48 @@
# Benchmark
Machine:
- Server
- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
- Laptop
- DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD
- i5 MacBook Pro (Retina, 13-inch, Early 2015)
- Desktop
- i7-6700k
System: CentOS release 6.3 (Final), Docker 1.12.1.
PaddlePaddle: paddlepaddle/paddle:latest (TODO: will rerun after 0.11.0)
- MKL-DNN tag v0.10
- MKLML 2018.0.20170720
- OpenBLAS v0.2.20
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.
## Benchmark Model
### Server
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Input image size - 3 * 224 * 224, Time: images/second
- VGG-19
| BatchSize | 64 | 128 | 256 |
|--------------|-------| -----| --------|
| OpenBLAS | 7.82 | 8.62 | 10.34 |
| MKLML | 11.02 | 12.86 | 15.33 |
| MKL-DNN | 27.69 | 28.8 | 29.27 |
chart on batch size 128
TBD
- ResNet
- GoogLeNet
### Laptop
TBD
### Desktop
TBD

@ -62,11 +62,11 @@ else()
FIND_PACKAGE(CUDA REQUIRED)
if(${CUDA_VERSION_MAJOR} VERSION_LESS 7)
message(FATAL_ERROR "Paddle need CUDA >= 7.0 to compile")
message(FATAL_ERROR "Paddle needs CUDA >= 7.0 to compile")
endif()
if(NOT CUDNN_FOUND)
message(FATAL_ERROR "Paddle need cudnn to compile")
message(FATAL_ERROR "Paddle needs cudnn to compile")
endif()
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} "-Xcompiler ${SIMD_FLAG}")

@ -79,9 +79,8 @@ if(NOT DEFINED IOS_ARCH)
# FIXME(liuyiqun): support "armv7;armv7s;arm64" future
set(IOS_ARCH "arm64")
elseif(IOS_PLATFORM STREQUAL "SIMULATOR")
set(IOS_ARCH "i386;x86_64")
elseif(IOS_PLATFORM STREQUAL "WATCHOS")
set(IOS_ARCH armv7k)
# FIXME(liuyiqun): support "i386;x86_64" future
set(IOS_ARCH "x86_64")
endif()
endif()
set(CMAKE_OSX_ARCHITECTURES ${IOS_ARCH} CACHE string "Build architecture for iOS")

@ -8,7 +8,7 @@ ExternalProject_Add(
extern_eigen3
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/RLovelett/eigen.git"
GIT_TAG 4e79cb69b9425f5f8c3a84be4350d4ab75b5fd9d
GIT_TAG 70661066beef694cadf6c304d0d07e0758825c10
PREFIX ${EIGEN_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""

@ -0,0 +1,67 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if(NOT WITH_GPU)
return()
endif()
include(ExternalProject)
set(NCCL_SOURCE_DIR ${THIRD_PARTY_PATH}/nccl)
include_directories(${NCCL_SOURCE_DIR}/src/extern_nccl/src)
if(WITH_DSO)
# If we use DSO, we do not build nccl, just download the dependencies
set(NCCL_BUILD_COMMAND "")
set(NCCL_INSTALL_COMMAND "")
set(NCCL_INSTALL_DIR "")
else()
# otherwise, we build nccl and link it.
set(NCCL_INSTALL_DIR ${THIRD_PARTY_PATH}/install/nccl)
# Note: cuda 8.0 is needed to make nccl
# When cuda is not installed on the system directory, need to set CUDA_HOME to your cuda root
set(NCCL_BUILD_COMMAND "make -j 8")
set(NCCL_INSTALL_COMMAND "make install PREFIX=${NCCL_INSTALL_DIR}")
endif()
ExternalProject_Add(
extern_nccl
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/NVIDIA/nccl.git"
GIT_TAG "v1.3.4-1"
PREFIX "${NCCL_SOURCE_DIR}"
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND "${NCCL_BUILD_COMMAND}"
INSTALL_COMMAND "${NCCL_INSTALL_COMMAND}"
INSTALL_DIR "${NCCL_INSTALL_DIR}"
TEST_COMMAND ""
)
if(WITH_DSO)
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/lib_nccl_dummy.c)
file(WRITE ${dummyfile} "const char * dummy_nccl = \"${dummyfile}\";")
add_library(nccl STATIC ${dummyfile})
else()
add_library(nccl INTERFACE)
endif()
else()
add_library(nccl STATIC IMPORTED GLOBAL)
set_property(TARGET nccl PROPERTY IMPORTED_LOCATION
${NCCL_INSTALL_DIR}/lib/libnccl_static.a)
endif()
add_dependencies(nccl extern_nccl)

@ -1,8 +1,26 @@
INCLUDE(ExternalProject)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
SET(PYBIND_SOURCE_DIR ${THIRD_PARTY_PATH}/pybind)
if(NOT WITH_PYTHON)
return()
endif()
include(ExternalProject)
INCLUDE_DIRECTORIES(${PYBIND_SOURCE_DIR}/src/extern_pybind/include)
set(PYBIND_SOURCE_DIR ${THIRD_PARTY_PATH}/pybind)
include_directories(${PYBIND_SOURCE_DIR}/src/extern_pybind/include)
ExternalProject_Add(
extern_pybind
@ -17,14 +35,12 @@ ExternalProject_Add(
TEST_COMMAND ""
)
if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/pybind_dummy.c)
file(WRITE ${dummyfile} "const char * dummy_any = \"${dummyfile}\";")
file(WRITE ${dummyfile} "const char * dummy_pybind = \"${dummyfile}\";")
add_library(pybind STATIC ${dummyfile})
else()
add_library(pybind INTERFACE)
endif()
add_dependencies(pybind extern_pybind)
LIST(APPEND external_project_dependencies pybind)

@ -1,27 +1,28 @@
# This file is use to check all support level of AVX on your machine
# so that PaddlePaddle can unleash the vectorization power of muticore.
INCLUDE(CheckCXXSourceRuns)
INCLUDE(CheckCXXSourceCompiles)
include(CheckCXXSourceRuns)
include(CheckCXXSourceCompiles)
IF(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
set(MMX_FLAG "-mmmx")
set(SSE2_FLAG "-msse2")
set(SSE3_FLAG "-msse3")
SET(AVX_FLAG "-mavx")
SET(AVX2_FLAG "-mavx2")
ELSEIF(MSVC)
set(AVX_FLAG "-mavx")
set(AVX2_FLAG "-mavx2")
elseif(MSVC)
set(MMX_FLAG "/arch:MMX")
set(SSE2_FLAG "/arch:SSE2")
set(SSE3_FLAG "/arch:SSE3")
SET(AVX_FLAG "/arch:AVX")
SET(AVX2_FLAG "/arch:AVX2")
ENDIF()
endif()
set(CMAKE_REQUIRED_FLAGS_RETAINED ${CMAKE_REQUIRED_FLAGS})
# Check MMX
set(CMAKE_REQUIRED_FLAGS ${MMX_FLAG})
set(MMX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <mmintrin.h>
int main()
@ -32,6 +33,7 @@ int main()
# Check SSE2
set(CMAKE_REQUIRED_FLAGS ${SSE2_FLAG})
set(SSE2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <emmintrin.h>
int main()
@ -42,6 +44,7 @@ int main()
# Check SSE3
set(CMAKE_REQUIRED_FLAGS ${SSE3_FLAG})
set(SSE3_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <pmmintrin.h>
int main()
@ -55,6 +58,7 @@ int main()
# Check AVX
set(CMAKE_REQUIRED_FLAGS ${AVX_FLAG})
set(AVX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
@ -67,6 +71,7 @@ int main()
# Check AVX 2
set(CMAKE_REQUIRED_FLAGS ${AVX2_FLAG})
set(AVX2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()

@ -0,0 +1,60 @@
# Design Doc: float16
## Why float16
Half precision (float16) is a binary floating-point format that occupies 16 bits in memory. float16 is half the size of traditional 32-bit single precision format (float) and has lower precision and smaller range.
When high precision computation is not required, using float16 data type could potentially
- reduce storage space, memory bandwidth, and power usages;
- increase the chance of data fitting into a smaller cache of lower latency;
- provide arithmetic speed up if supported by hardware.
## Survey of current float16 support
A brief survey of float16 support on different compilers, hardwares, and libraries can be found below. Interested readers can refer to [link1](https://github.com/PaddlePaddle/Paddle/issues/4853) and [link2](https://github.com/Xreki/Xreki.github.io/blob/master/multi_data_types_in_dl_framework/ppt/float16_and_quantized_type.md) for more info.
The goal of float16 is to serve as a key for the executor to find and run the correct version of compute method specialized for float16 in operator kernel. It should be compatible with various natively supported float16 implementations including `__half` for cuda, `float16_t` for ARM, and `Eigen::half` for Eigen to make writing customized float16 kernels easier.
### Compiler
- nvcc supports `__half` data type after CUDA 7.5.
- `__fp16` or `float16_t` is supported as storage type for gcc >= 6.1 and clang >= 3.4.
- `__fp16` or `float16_t` is supported as arithmetic type for gcc >= 7.1 and clang >= 3.9.
### Hardware
- `__half` is supported on GPU with compute capability >= 5.3.
- `__fp16` is supported as storage type for ARMv7-A, ARMv8-A, and above.
- `__fp16` is supported as arithmetic type after ARMv8.2-A (currently, the only microarchitecture implementing ARMv8.2-A is ARM Cortex-A75, which is announced in May 2017. There seems to be no application processors currently available on market that adopts this architecture. It is reported that Qualcomm Snapdragon 845 uses Cortex-A75 design and will be available in mobile devices in early 2018).
### Libraries
- [Eigen](https://github.com/RLovelett/eigen) >= 3.3 supports float16 calculation on both GPU and CPU using the `Eigen::half` class. It is mostly useful for Nvidia GPUs because of the overloaded arithmetic operators using cuda intrinsics. It falls back to using software emulation on CPU for calculation and there is no special treatment to ARM processors.
- [ARM compute library](https://github.com/ARM-software/ComputeLibrary) >= 17.02.01 supports NEON FP16 kernels (requires ARMv8.2-A CPU).
## Implementation
The float16 class holds a 16-bit `uint16_t` data internally.
```
struct float16 {
uint16_t x;
};
```
float16 supports the following features:
- constructors / assignment operators that take input from primitive data types including bool, integers of various length, float, and double.
- constructors / assignment operators that take input from `__half` on cuda, `float16_t` on ARM, and `Eigen::half` on Eigen.
- conversion operators to primitive data types and half precision data types on cuda, ARM and Eigen.
- overloaded arithmetic operators for cuda, arm, and non-arm cpu, respectively. These operators will take advantage of the cuda and ARM intrinsics on the corresponding hardware.
To support the above features, two fundamental conversion functions are provided:
```
float16 float_to_half_rn(float f); // convert to half precision in round-to-nearest-even mode
float half_to_float(float16 h);
```
which provides one-to-one conversion between float32 and float16. These twos functions will do different conversion routines based on the current hardware. CUDA/ARM instrinsics will be used when the corresonding hardware is available. If the hardware or compiler level does not support float32 to float16 conversion, software emulation will be performed to do the conversion.
## To do
After float16 class is available, some of the future items are below:
- Update pybind/tensor_py.h to bind c++ float16 with numpy float16.
- Modify `IndicateDataType()` method in `framework/operator.h` to make it compatible with float16.
- Create a type-casting operator that can convert the data type in tensor between float16 and other types.

@ -0,0 +1,232 @@
## Survey on Graph
Neural network framework often provides symbolic API for users to write network topology conveniently. This doc manily focus on symbolic API in most popular neural network frameworks, and try to find out how to parse symbolic configuration to a portable file, such as protobuf or json.
### Mxnet
The core concept of symbolic API is `Symbol`. Mxnet implements `Symbol` class in C++, and export to Python using C-API. Please refer to the comments in Mxnet:
`Symbol` is help class used to represent the operator node in Graph.
`Symbol` acts as an interface for building graphs from different components like Variable, Functor and Group. `Symbol` is also exported to python front-end (while Graph is not) to enable quick test and deployment. Conceptually, symbol is the final operation of a graph and thus including all the information required (the graph) to evaluate its output value.
A simple network topology wrote by Symbol is as follows:
```python
def get_symbol(num_classes=10, **kwargs):
data = mx.symbol.Variable('data')
data = mx.symbol.Flatten(data=data)
fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu")
fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64)
act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu")
fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=num_classes)
mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
return mlp
```
Varible here is actually a Symbol. Every basic Symbol will correspond to one Node, and every Node has its own NodeAttr. There is a op field in NodeAttr class, when a Symbol represents Variable(often input data), the op field is null.
Symbol contains a data member, std::vector<NodeEntry> outputs, and NodeEntry cantains a poniter to Node. We can follow the Node pointer to get all the Graph.
And Symbol can be saved to a Json file.
Here is a detailed example:
```
>>> import mxnet as mx
>>> data = mx.symbol.Variable('data')
>>> print data.debug_str()
Variable:data
>>> data = mx.symbol.Flatten(data=data)
>>> print data.debug_str()
Symbol Outputs:
output[0]=flatten0(0)
Variable:data
--------------------
Op:Flatten, Name=flatten0
Inputs:
arg[0]=data(0) version=0
>>> fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
>>> print fc1.debug_str()
Symbol Outputs:
output[0]=fc1(0)
Variable:data
--------------------
Op:Flatten, Name=flatten0
Inputs:
arg[0]=data(0) version=0
Variable:fc1_weight
Variable:fc1_bias
--------------------
Op:FullyConnected, Name=fc1
Inputs:
arg[0]=flatten0(0)
arg[1]=fc1_weight(0) version=0
arg[2]=fc1_bias(0) version=0
Attrs:
num_hidden=128
```
### TensorFlow
The core concept of symbolic API is `Tensor`. Tensorflow defines `Tensor` in Python. Please refer to the comments in TensorFlow:
A `Tensor` is a symbolic handle to one of the outputs of an `Operation`. It does not hold the values of that operation's output, but instead provides a means of computing those values in a TensorFlow [Session](https://www.tensorflow.org/api_docs/python/tf/Session).
A simple example is as follows:
```python
# Build a dataflow graph.
c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
e = tf.matmul(c, d)
# Construct a `Session` to execute the graph.
sess = tf.Session()
# Execute the graph and store the value that `e` represents in `result`.
result = sess.run(e)
```
The main method of `Tensor` is as follows:
```python
@property
def op(self):
"""The `Operation` that produces this tensor as an output."""
return self._op
@property
def dtype(self):
"""The `DType` of elements in this tensor."""
return self._dtype
@property
def graph(self):
"""The `Graph` that contains this tensor."""
return self._op.graph
@property
def name(self):
"""The string name of this tensor."""
if not self._op.name:
raise ValueError("Operation was not named: %s" % self._op)
return "%s:%d" % (self._op.name, self._value_index)
@property
def device(self):
"""The name of the device on which this tensor will be produced, or None."""
return self._op.device
```
Tensor can be taken as target to run by session. Tensor contains all the information of Graph, and tracks data dependency.
Here is a detailed example:
```
>>> import tensorflow as tf
>>> c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> print c.graph
<tensorflow.python.framework.ops.Graph object at 0x10f256d50>
>>> d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
>>> print d.graph
<tensorflow.python.framework.ops.Graph object at 0x10f256d50>
>>> e = tf.matmul(c, d)
>>> print e.graph
<tensorflow.python.framework.ops.Graph object at 0x10f256d50>
```
### Dynet
The core concept of symbolic API is `Expression`, and Dynet defines `Expression` class in C++.
A simple example is as follows:
```cpp
ComputationGraph cg;
Expression W = parameter(cg, pW);
Expression in = input(cg, xs[i]);
Expression label = input(cg, ys[i]);
Expression pred = W * in;
Expression loss = square(pred - label);
```
The input data and parameter are also represented by Expression. Every basci Expression corresponds to a Node. And input data is also a Node.
Expression has a data member ComputationGraph, and ComputationGraph will be modified in users' configuring process. Expression can be a running target, beacuse Expression contains all dependency.
Here is a detailed example:
write topology in C++
```
ComputationGraph cg;
Expression W = parameter(cg, pW);
cg.print_graphviz();
Expression pred = W * xs[i];
cg.print_graphviz();
Expression loss = square(pred - ys[i]);
cg.print_graphviz();
```
compile and print
```
# first print
digraph G {
rankdir=LR;
nodesep=.05;
N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"];
}
# second print
digraph G {
rankdir=LR;
nodesep=.05;
N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"];
N1 [label="v1 = v0 * -0.98"];
N0 -> N1;
}
# third print
digraph G {
rankdir=LR;
nodesep=.05;
N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"];
N1 [label="v1 = v0 * -0.98"];
N0 -> N1;
N2 [label="v2 = -1.88387 - v1"];
N1 -> N2;
N3 [label="v3 = -v2"];
N2 -> N3;
N4 [label="v4 = square(v3)"];
N3 -> N4;
}
```
### Conclusion
Actually, Symbol/Tensor/Expression in Mxnet/TensorFlow/Dynet are the same level concepts. We use a unified name Expression here, this level concept has following features:
- Users wirte topoloy with symbolic API, and all return value is Expression, including input data and parameter.
- Expression corresponds with a global Graph, and Expression can also be composed.
- Expression tracks all dependency and can be taken as a run target

Binary file not shown.

After

Width:  |  Height:  |  Size: 620 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 B

@ -0,0 +1,36 @@
# Design Doc: Model Format
## Motivation
A model is an output of the training process. One complete model consists of two parts, the **topology** and the **parameters**. In order to support industrial deployment, the model format must be self-complete and must not expose any training source code.
As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters.
## Implementation
The topology is saved as a plain text in a detailed self-contain protobuf file.
The parameters are saved as a binary file. As we all know, the protobuf message has a limit of [64M size](https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.io.coded_stream#CodedInputStream.SetTotalBytesLimit.details). We have done a [benchmark experiment](https://github.com/PaddlePaddle/Paddle/pull/4610), which shows that protobuf is not fit for the task.
As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is,
The table below shows a tensor's byte view in detail. Note that all the signed values are written in the little-endian format.
|field name | type | description |
| --- | --- | --- |
| version | uint32_t | Version of saved file. Always 0 now. |
| tensor desc length | uint32_t | TensorDesc(Protobuf message) length in bytes. |
| tensor desc | void* | TensorDesc protobuf binary message |
| tensor data | void* | Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` |
| lod_level | uint64_t | Level of LoD |
| length of lod[0] | uint64_t | [Optional] length of lod[0] in bytes. |
| data of lod[0] | uint64_t* | [Optional] lod[0].data() |
| ... | ... | ... |
## Summary
- We introduce a model format.
- The model represented by its forward-pass computation procedure is saved in a **ProgramDesc** protobuf message.
- A bunch of specified format binary tensors describe the **parameters**.

@ -65,20 +65,6 @@ class Optimizer(object):
def __init__(self):
pass
def create_backward_pass(self, loss, parameter_list=None):
"""
create and add gradient Operators in BlockDesc to Compute gradients of `loss`
for parameters in parameter_list
Args:
loss: an variable generated by cost function.
parameter_list: parameters that need to compute gradient and update to optimize the lost.
Returns:
list of (parameters, gradients) pair.
"""
return None
def create_optimization_pass(self, parameters_and_grads):
"""Add optimization operators to update gradients to variables.
@ -93,7 +79,7 @@ class Optimizer(object):
def minimize(self, loss, parameter_list):
"""Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `create_backward_pass()` and
This method combines interface `append_backward_ops()` and
`create_optimization_pass()` into one.
"""
params_grads = self.create_backward_pass(loss, parameter_list)

@ -0,0 +1,72 @@
# Averaging Parameter in PaddlePaddle
## Why Averaging
In a large scale machine learning setup where the size of the training data is huge, it could take us a large number of iterations over the training data before we can achieve the optimal values of parameters of our model. Looking at the problem setup, it is desirable if we can obtain the optimal values of parameters by going through the data in as few passes as we can.
Polyak and Juditsky (1992) showed that the test performance of simple average of parameters obtained by Stochastic Gradient Descent (SGD) is as good as that of parameter values that are obtained by training the model over and over again, over the training dataset.
Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for <img src="./images/theta_star.gif"/><br/> . The averaging is done as follows:
<img src="./images/asgd.gif" align="center"/><br/>
We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above.
### How to perform Parameter Averaging in PaddlePaddle
Parameter Averaging in PaddlePaddle works in the following way during training :
1. It will take in an instance of a normal optimizer as an input, e.g. RMSPropOptimizer
2. The optimizer itself is responsible for updating the parameters.
3. The ParameterAverageOptimizer maintains a separate copy of the parameters for itself:
1. In concept, the values of this copy are the average of the values of the parameters in the most recent N batches.
2. However, saving all the N instances of the parameters in memory is not feasible.
3. Therefore, an approximation algorithm is used.
Hence, overall we have have two copies of the parameters: one for the optimizer itself, and one for the ParameterAverageOptimizer. The former should be used in back propagation, while the latter should be used during testing and should be saved.
During the testing/ saving the model phase, we perform the following steps:
1. Perform the delayed operations.
2. Save current values of the parameters to a temporary variable.
3. Replace the values of the parameters with the averaged values.
4. Perform testing and/or save the parameters.
5. Restore the values of the parameters once done.
### How to implement Averaging of Parameter in PaddlePaddle
We can add the ParameterAverageOptimizer op to the graph through Python API. Using this approach, we manually add this op to the graph and direct the output of the optimizer op to this op during training.
**Advantages**:
- Allows for greater flexibility to the users of PaddlePaddle. Using this approach, the users can plug different optimizers into ParameterAverageOptimizer by passing in the optimizer to the op.
- Makes it easy for the users to customize and extend the framework.
**Disadvantages**:
- Implementation requires re-writing the averaging methodology in Python.
### Low-Level implementation
In the new design, we propose to create a new operation for averaging parameter updates (ParameterAverageOptimizer). For now, we can add an op that takes in the following as input:
- the optimizer
- the window_size to keep the updates
The ParameterAverageOptimizer op can be like any other operator with its own CPU/GPU implementation either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement the kernel using Eigen following the abstraction pattern implemented for [Operators](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/rmsprop_op.h). We also want to support the case when the Trainer/Optimizer runs on the GPU while ParameterAverageOptimizer runs on a CPU.
The idea of building an op for averaging is in sync with the refactored PaddlePaddle philosophy of using operators to represent any computation unit. The way the op will be added to the computation graph will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API.
### Python API implementation for ParameterAverageOptimizer
Based on Polyak and Juditsky (1992), we can generalize the averaging of updates to any optimizer. The input to the op would be the following:
- Any optimizer (RMSProp , AdaGrad etc.)
- A window size. The op keeps accumulating updated parameter values over a window of N batches and takes an average. Move the averaged value to a buffer when window is full to avoid loss of precision.
Using the ParameterAverageOptimizer op, any user can add the operation to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support averaging. As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since ParameterAverageOptimizer will be an operator, it makes sense to create it in the layer functions.
We will have a wrapper written in Python that will support the functionality and implement the actual core computation in C++ core as we have done for other [Optimizers](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/rmsprop_op.cc)
#### Creation of the ParameterAverageOptimizer operator
There are two ways for creating the ParameterAverageOptimizer op:
1. We create the op immediately while building the computation graph.
2. We add the op in a lazy manner, just before the backward pass, similar to the way the optimization ops are added.
The proposal is to add the op immediately while building the computation graph.
#### High-level API
In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we also need to provide parameter average functionality in layer functions.

@ -1,7 +1,7 @@
# Regularization in PaddlePaddle
## Introduction to Regularization
A central problem in machine learning is how to design an algorithm that will perform well not just on the training data, but also on new data. Many strategies are used by machine learning practitioners to reduce the test error, possibly at the expense of increased training error. These strategies are collectively known as **regularization**.
A central problem in machine learning is how to design an algorithm that will perform well not just on the training data, but also on new data. A frequently faced problem is the problem of **overfitting**, where the model does not make reliable predictions on new unseen data. **Regularization** is the process of introducing additional information in order to prevent overfitting. This is usually done by adding extra penalties to the loss function that restricts the parameter spaces that an optimization algorithm can explore.
### Parameter Norm Penalties
Most common regularization approaches in deep learning are based on limiting the capacity of the models by adding a parameter norm penalty to the objective function `J`. This is given as follows:
@ -18,52 +18,21 @@ The most commonly used norm penalties are the L2 norm penalty and the L1 norm pe
##### L1 Regularization
<img src="./images/l1_regularization.png" align="center"/><br/>
A much more detailed mathematical background of reguilarization can be found [here](http://www.deeplearningbook.org/contents/regularization.html).
A much more detailed mathematical background of regularization can be found [here](http://www.deeplearningbook.org/contents/regularization.html).
## Regularization Survey
## How to do Regularization in PaddlePaddle
On surveying existing frameworks like Tensorflow, PyTorch, Caffe, etc, it can be seen that there are 2 common approaches of doing regularization:
1. Making regularization a part of the optimizer using an attribute like `weight_decay` that is used to control the scale of the L2 Penalty. This approach is used in PyTorch as follows:
```python
opt = torch.optim.SGD(params, lr=0.2, weight_decay=0.2)
```
At every optimization step, this code will add the gradient of the L2 Norm of the params to the gradient of the params with respect to the loss function. This can seen in the following code snippet:
```python
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
```
This is a very restyrictive way of doing regularization and does not give the users enough flexibility.
**Advantages**:
- It is easy to implement for us.
- Faster execution of backward. However, it can be done manually by advanced users too.
**Disadvantages**:
- Not flexible for other regularizations such as L1/L0 regularization.
- Does not allow for different regularization coefficient for different parameters. For example, in most models, ony the weight matrices are regularized and the bias vectors are unregularized.
- Tightly coupled optimizer and regularization implementation.
2. Adding regularization ops to the graph through Python API. This approach is used by Tensorflow and Caffe. Using this approach, we manually add regularization ops to the graph and then add the regularization loss to the final loss function before sending them to the optimizer.
**Advantages**:
- Allows for greater flexibility to the users of Paddle. Using this approach, the users can put different regularization to different parameters and also choose parameters that are not a part of regularization.
- Makes it easy for the users to customize and extend the framework.
**Disadvantages**:
- Implementation requires comprehensive design and time.
A detailed survey of regularization in various deep learning frameworks can be found [here](https://github.com/PaddlePaddle/Paddle/wiki/Regularization-Survey).
## Proposal for Regularization in PaddlePaddle
### Low-Level implementation
In the new design, we propose to create new operations for regularization. For now, we can add 2 ops thgat correspond to the most frequently used regularizations:
In the new design, we propose to create new operations for regularization. For now, we can add 2 ops that correspond to the most frequently used regularizations:
- L2_regularization_op
- L1_regularization_op
These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate Cpu and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes. other than L1 and L2 norm penalties.
These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes other than L1 and L2 norm penalties.
The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API.
@ -94,7 +63,7 @@ Since we want to create the regularization ops in a lazy manner, the regularizat
#### High-level API
In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we lso need to provide regularization functionality in layer functions. The design of these APIs can be postponed for later right now. A good reference for these APIs can be found in [Keras](https://keras.io/regularizers/) and also by looking at Tensorflow in [`tf.contrib.layers`](https://www.tensorflow.org/api_guides/python/contrib.layers).
In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we also need to provide regularization functionality in layer functions. The design of these APIs can be postponed for later right now. A good reference for these APIs can be found in [Keras](https://keras.io/regularizers/) and also by looking at Tensorflow in [`tf.contrib.layers`](https://www.tensorflow.org/api_guides/python/contrib.layers).

@ -75,7 +75,7 @@ PaddlePaddle目前支持8种learning_rate_schedule这8种learning_rate_schedu
optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
learning_rate_schedule="manual",
learning_rate_schedule="pass_manual",
learning_rate_args="1:1.0,2:0.9,3:0.8",)
在该示例中当已训练pass数小于等于1时学习率为 :code:`1e-3 * 1.0`当已训练pass数大于1小于等于2时学习率为 :code:`1e-3 * 0.9`当已训练pass数大于2时学习率为 :code:`1e-3 * 0.8`

@ -145,7 +145,7 @@ PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以
Jupyter Notebook是一个开源的web程序大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。
PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Nodebook。
PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。
如果您想要更深入了解deep learningPaddlePaddle Book一定是您最好的选择。
我们提供可以直接运行PaddlePaddle Book的Docker镜像直接运行

@ -1,65 +0,0 @@
# 构建Raspberry Pi平台上的PaddlePaddle库
对于Rasspberry Pi系统用户可通过ssh等方式登录到Raspberry Pi系统上按照[源码编译PaddlePaddle](http://www.paddlepaddle.org/doc_cn/getstarted/build_and_install/cmake/build_from_source_cn.html)相关文档所述直接编译Raspberry Pi平台上适用的PaddlePaddle库。
用户也可以在自己熟悉的开发平台上通过交叉编译的方式来编译。这篇文档将以Linux x86-64平台为例介绍交叉编译Raspberry Pi平台上适用的PaddlePaddle的方法和步骤。
## 准备交叉编译环境
从源码交叉编译PaddlePaddle用户需要提前准备好交叉编译环境。用户可自行前往[github](https://github.com/raspberrypi/tools)下载Raspberry Pi平台使用的C/C++交叉编译工具链,也可通过以下命令获取:
```bash
git clone https://github.com/raspberrypi/tools.git
```
该github仓库中包含若干个预编译好的、针对不同平台的编译工具。宿主机是Linux x86-64环境则需选用`arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64`下的作为编译工具所使用的编译器为arm-linux-gnueabihf-gcc 4.8.3。
注意该编译工具链需要系统glibc支持2.14以上。
## 配置交叉编译参数
CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/raspberry_pi.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/raspberry_pi.cmake),以提供一些默认的编译器和编译参数相关配置。
交叉编译Raspberry Pi版本PaddlePaddle库时有一些必须配置的参数
- `CMAKE_SYSTEM_NAME`CMake编译的目标平台必须配置为`RPi`。在设置`CMAKE_SYSTEM_NAME=RPi`后PaddlePaddle的CMake系统才认为在是在交叉编译Raspberry Pi系统的版本并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及目标机版OpenBLAS库。
Raspberry Pi平台可选配置参数
- `RPI_TOOLCHAIN`编译工具链所在的绝对路径或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动设置需要使用的交叉编译器否则用户需要在cmake时手动设置这些值。无默认值。
- `RPI_ARM_NEON`是否使用NEON指令。目前必须设置成`ON`,默认值为`ON`。
其他配置参数:
- `HOST_C/CXX_COMPILER`宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。
cmake参数如下
```
cmake -DCMAKE_SYSTEM_NAME=RPi \
-DRPI_TOOLCHAIN=your/path/to/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64 \
-DRPI_ARM_NEON=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_GPU=OFF \
-DWITH_C_API=ON \
-DWITH_PYTHON=OFF \
-DWITH_SWIG_PY=OFF \
..
```
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。
## 编译和安装
CMake配置完成后执行以下命令PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle。
```bash
make
make install
```
注意如果你曾经在源码目录下编译过其他平台的PaddlePaddle库请先使用`rm -rf`命令删除`third_party`目录和`build`目录以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。
执行完安装命令后由于上一步cmake配置中`WITH_C_API`设置为`ON``your/path/to/install`目录中会包含`include`和`lib`目录,其中`include`中包含C-API的头文件`lib`中包含一个Raspberry Pi版本的库。
更多的编译配置见[源码编译PaddlePaddle](http://www.paddlepaddle.org/doc_cn/getstarted/build_and_install/cmake/build_from_source_cn.html)相关文档。

@ -1,219 +0,0 @@
# Contribute Code
We sincerely appreciate your contributions. You can use fork and pull request
workflow to merge your code.
## Code Requirements
- Your code comments must be fully documented by
[Doxygen](http://www.stack.nl/~dimitri/doxygen/) style.
- Make sure the compiler option `WITH_STYLE_CHECK` is on and the compiler
passes the code style check.
- All code must have unit test.
- Pass all unit tests.
The following tutorial guides you into submitting your contibution.
## [Creating a Fork](https://help.github.com/articles/fork-a-repo/)
Just head over to the GitHub page and click the "Fork" button.
It's just that simple.
## Clone
Clone remote repository.
```bash
➜ git clone https://github.com/USERNAME/Paddle
➜ cd Paddle
```
## Create a local branch
Paddle is currently using [Git-flow branching model](http://nvie.com/posts/a-successful-git-branching-model/).
All feature and bug fix development work should be done on a new branch, generally create new branch from `develop` branch .
```bash
➜ git checkout -b my-cool-stuff
```
Before the checkout, you need to keep the current branch directory clean, otherwise the untracked file will be brought to the new branch, which can be inspected by `git status`.
## Using `pre-commit` hook
Paddle developers use [pre-commit](http://pre-commit.com/) tool to manage git
pre-commit hooks. It can help us format source codes (cpp, python), check some
basic thing before commit (only one EOL for each file, do not add a huge file
in git). `pre-commit` tests is a part of unit tests in Travis-CI now, every
PR doesn't fit hook can not be merged into Paddle.
To use [pre-commit](http://pre-commit.com/), you should install it by
`pip install pre-commit`, and currently, Paddle uses `clang-format` to format
c/cpp sources. Please make sure clang-format 3.8+ installed.
Install and run it as follow:
```bash
➜ pip install pre-commit
➜ pre-commit install
```
When you commit your code, the pre-commit hook will check the local code if there is
anything not suitable to commit, and so on.
## Start to develop
In this tutorial, I delete a line in README.md and created a new file.
We can use `git status` to inspect the changes of current directory, `git diff` to see difference.
```bash
➜ git status
On branch test
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
modified: README.md
Untracked files:
(use "git add <file>..." to include in what will be committed)
test
no changes added to commit (use "git add" and/or "git commit -a")
```
## Build and Test
We package PaddlePaddle's compile environment into a Docker image, called the develop image named `paddle:dev`, it contains all compiling tools that PaddlePaddle needs.
If you want to build the develop image, just run:
```bash
➜ docker build -t paddle:dev .
```
Then we can use the develop image to build PaddlePaddle source. For example:
```bash
➜ docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TEST=ON" paddle:dev
```
The above command will compile PaddlePaddle and create a Dockerfile for building production image. All the generated files are in the build directory. "WITH_GPU" controls if the generated production image supports GPU. "WITH_AVX" controls if the generated production image supports AVX. "WITH_TEST" controls if the unit test will be generated.
Then we can generate the production image by copying the compiled PaddlePaddle program into the image by
```bash
➜ docker build -t paddle:prod -f build/Dockerfile .
```
Run unit test finally:
```bash
➜ docker run -it -v $(pwd):/paddle paddle:dev bash -c "cd /paddle/build && ctest"
```
For more details, you can read [this doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Commit
Next we cancel the changes to the README.md file and then commit our changes by following command lines:
```bash
➜ git checkout -- README.md
➜ git status
On branch test
Untracked files:
(use "git add <file>..." to include in what will be committed)
test
nothing added to commit but untracked files present (use "git add" to track)
➜ git add test
```
We should write a description of each commit by `git commit` to allow others to know
the changes in these files.
```bash
➜ git commit
CRLF end-lines remover...............................(no files to check)Skipped
yapf.................................................(no files to check)Skipped
Check for added large files..............................................Passed
Check for merge conflicts................................................Passed
Check for broken symlinks................................................Passed
Detect Private Key...................................(no files to check)Skipped
Fix End of Files.....................................(no files to check)Skipped
clang-formater.......................................(no files to check)Skipped
[my-cool-stuff c703c041] add test file
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 233
```
## Keeping Fork Up to Date
Before pull your request, you should sync your code from the latest PaddlePaddle.
To do this, you'll need to add a remote at first:
```bash
➜ git remote add upstream https://github.com/PaddlePaddle/Paddle
➜ git remote
origin
upstream
```
Update your fork with the latest upstream changes:
```bash
➜ git fetch upstream
➜ git pull upstream develop
```
Now, your local master branch is up-to-date with everything modified upstream.
## Push to GitHub
```bash
# push to your repository in Github
➜ git push origin my-cool-stuff
```
## Create an issue and a Pull Request
Create an Issue to describe the problem and record its number.
Go to the page for your fork on GitHub, select your development branch,
and click the `New pull request`.
<img width="295" alt="screen shot 2017-04-26 at 9 09 28 pm" src="https://cloud.githubusercontent.com/assets/11692045/25436054/a6d98c66-2ac4-11e7-9cb1-18dd13150230.png">
Then select the target branch:
<img width="750" alt="screen shot 2017-04-26 at 9 11 52 pm" src="https://cloud.githubusercontent.com/assets/11692045/25436139/f83b1e6c-2ac4-11e7-8c0e-add499023c46.png">
We can add `resolve #Issue number` in PR description to close the issue automatically after the PR is merge. More details in <https://help.github.com/articles/closing-issues-via-commit-messages/>.
Then wait for review, if there need to modify, refer to the above steps to update the corresponding origin branch.
## Delete origin branch
After the PR is merge into the main repository, we can delete the remote branch on the PR page.
<img width="775" alt="screen shot 2017-04-26 at 9 18 24 pm" src="https://cloud.githubusercontent.com/assets/11692045/25436457/e4cdd472-2ac5-11e7-9272-badc76c4a23e.png">
Or just run:
```bash
➜ git push origin :my-cool-stuff
```
## Delete local branch
Finally, we delete local branch:
```bash
➜ git checkout develop
# delete my-cool-stuff branch
➜ git branch -D my-cool-stuff
```

@ -0,0 +1 @@
../../../CONTRIBUTING.md

@ -21,7 +21,6 @@
dev/build_cn.rst
dev/write_docs_cn.rst
dev/contribute_to_paddle_cn.md
模型配置
--------

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save