parent
acf37ad675
commit
f5cd961900
@ -0,0 +1,32 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/elementwise_min_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
elementwise_min,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
elementwise_min_grad,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int64_t>);
|
@ -0,0 +1,152 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/operators/elementwise_op_function.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct MinFunctor {
|
||||||
|
inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? a : b; }
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class ElementwiseMinKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
auto* x = ctx.Input<Tensor>("X");
|
||||||
|
auto* y = ctx.Input<Tensor>("Y");
|
||||||
|
auto* z = ctx.Output<Tensor>("Out");
|
||||||
|
z->mutable_data<T>(ctx.GetPlace());
|
||||||
|
TransformFunctor<MinFunctor<T>, T, DeviceContext> functor(
|
||||||
|
x, y, z, ctx.template device_context<DeviceContext>(), MinFunctor<T>());
|
||||||
|
|
||||||
|
auto x_dims = x->dims();
|
||||||
|
auto y_dims = y->dims();
|
||||||
|
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
|
||||||
|
"Rank of first input must >= rank of second input.");
|
||||||
|
|
||||||
|
if (x_dims == y_dims) {
|
||||||
|
functor.Run();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int axis = ctx.Attr<int>("axis");
|
||||||
|
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
|
||||||
|
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
|
||||||
|
"Axis should be in range [0, x_dims)");
|
||||||
|
|
||||||
|
int pre, n, post;
|
||||||
|
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
|
||||||
|
if (post == 1) {
|
||||||
|
functor.RunRowWise(n, pre);
|
||||||
|
return;
|
||||||
|
} else {
|
||||||
|
functor.RunMidWise(n, pre, post);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMinGradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e < y_e).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = (x_e >= y_e).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMinBroadCastGradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ, typename Pre, typename N>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
|
||||||
|
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
|
||||||
|
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||||
|
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
|
||||||
|
.reshape(Eigen::DSizes<int, 2>(pre, n))
|
||||||
|
.sum(Eigen::array<int, 1>{{0}});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMinBroadCast2GradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ, typename Pre, typename N, typename Post>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
|
||||||
|
Post post) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
|
||||||
|
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
|
||||||
|
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
|
||||||
|
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
|
||||||
|
.sum(Eigen::array<int, 2>{{0, 2}});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class ElementwiseMinGradKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
ElementwiseGradCompute<DeviceContext, T, ElementwiseMinGradFunctor<T>,
|
||||||
|
ElementwiseMinBroadCastGradFunctor<T>,
|
||||||
|
ElementwiseMinBroadCast2GradFunctor<T>>(ctx);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
Loading…
Reference in new issue