|
|
@ -3,15 +3,20 @@ import numpy as np
|
|
|
|
from op_test import OpTest
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param):
|
|
|
|
def conv3dtranspose_forward_naive(input_, filter_, attrs):
|
|
|
|
in_n, in_c, in_d, in_h, in_w = input_.shape
|
|
|
|
in_n, in_c, in_d, in_h, in_w = input_.shape
|
|
|
|
f_c, out_c, f_d, f_h, f_w = filter_.shape
|
|
|
|
f_c, out_c, f_d, f_h, f_w = filter_.shape
|
|
|
|
assert in_c == f_c
|
|
|
|
assert in_c == f_c
|
|
|
|
|
|
|
|
|
|
|
|
stride, pad = conv3dtranspose_param['stride'], conv3dtranspose_param['pad']
|
|
|
|
stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
|
|
|
|
out_d = (in_d - 1) * stride[0] + f_d
|
|
|
|
'dilations']
|
|
|
|
out_h = (in_h - 1) * stride[1] + f_h
|
|
|
|
|
|
|
|
out_w = (in_w - 1) * stride[2] + f_w
|
|
|
|
d_bolck_d = dilations[0] * (f_d - 1) + 1
|
|
|
|
|
|
|
|
d_bolck_h = dilations[1] * (f_h - 1) + 1
|
|
|
|
|
|
|
|
d_bolck_w = dilations[2] * (f_w - 1) + 1
|
|
|
|
|
|
|
|
out_d = (in_d - 1) * stride[0] + d_bolck_d
|
|
|
|
|
|
|
|
out_h = (in_h - 1) * stride[1] + d_bolck_h
|
|
|
|
|
|
|
|
out_w = (in_w - 1) * stride[2] + d_bolck_w
|
|
|
|
out = np.zeros((in_n, out_c, out_d, out_h, out_w))
|
|
|
|
out = np.zeros((in_n, out_c, out_d, out_h, out_w))
|
|
|
|
|
|
|
|
|
|
|
|
for n in range(in_n):
|
|
|
|
for n in range(in_n):
|
|
|
@ -25,10 +30,11 @@ def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param):
|
|
|
|
for k in range(out_c):
|
|
|
|
for k in range(out_c):
|
|
|
|
tmp_out = np.sum(input_masked * filter_[:, k, :, :, :],
|
|
|
|
tmp_out = np.sum(input_masked * filter_[:, k, :, :, :],
|
|
|
|
axis=0)
|
|
|
|
axis=0)
|
|
|
|
d1, d2 = d * stride[0], d * stride[0] + f_d
|
|
|
|
d1, d2 = d * stride[0], d * stride[0] + d_bolck_d
|
|
|
|
i1, i2 = i * stride[1], i * stride[1] + f_h
|
|
|
|
i1, i2 = i * stride[1], i * stride[1] + d_bolck_h
|
|
|
|
j1, j2 = j * stride[2], j * stride[2] + f_w
|
|
|
|
j1, j2 = j * stride[2], j * stride[2] + d_bolck_w
|
|
|
|
out[n, k, d1:d2, i1:i2, j1:j2] += tmp_out
|
|
|
|
out[n, k, d1:d2:dilations[0], i1:i2:dilations[1], j1:j2:
|
|
|
|
|
|
|
|
dilations[2]] += tmp_out
|
|
|
|
|
|
|
|
|
|
|
|
out = out[:, :, pad[0]:out_d - pad[0], pad[1]:out_h - pad[1], pad[2]:out_w -
|
|
|
|
out = out[:, :, pad[0]:out_d - pad[0], pad[1]:out_h - pad[1], pad[2]:out_w -
|
|
|
|
pad[2]]
|
|
|
|
pad[2]]
|
|
|
@ -41,18 +47,19 @@ class TestConv3dTransposeOp(OpTest):
|
|
|
|
self.init_op_type()
|
|
|
|
self.init_op_type()
|
|
|
|
self.init_test_case()
|
|
|
|
self.init_test_case()
|
|
|
|
|
|
|
|
|
|
|
|
conv3dtranspose_param = {'stride': self.stride, 'pad': self.pad}
|
|
|
|
|
|
|
|
input_ = np.random.random(self.input_size).astype("float32")
|
|
|
|
input_ = np.random.random(self.input_size).astype("float32")
|
|
|
|
filter_ = np.random.random(self.filter_size).astype("float32")
|
|
|
|
filter_ = np.random.random(self.filter_size).astype("float32")
|
|
|
|
output = conv3dtranspose_forward_naive(
|
|
|
|
|
|
|
|
input_, filter_, conv3dtranspose_param).astype("float32")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.inputs = {'Input': input_, 'Filter': filter_}
|
|
|
|
self.inputs = {'Input': input_, 'Filter': filter_}
|
|
|
|
self.attrs = {
|
|
|
|
self.attrs = {
|
|
|
|
'strides': self.stride,
|
|
|
|
'strides': self.stride,
|
|
|
|
'paddings': self.pad,
|
|
|
|
'paddings': self.pad,
|
|
|
|
# 'dilations': self.dilations
|
|
|
|
'dilations': self.dilations
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output = conv3dtranspose_forward_naive(input_, filter_,
|
|
|
|
|
|
|
|
self.attrs).astype("float32")
|
|
|
|
|
|
|
|
|
|
|
|
self.outputs = {'Output': output}
|
|
|
|
self.outputs = {'Output': output}
|
|
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
def test_check_output(self):
|
|
|
@ -108,11 +115,60 @@ class TestWithStride(TestConv3dTransposeOp):
|
|
|
|
self.filter_size = [f_c, 6, 3, 3, 3]
|
|
|
|
self.filter_size = [f_c, 6, 3, 3, 3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDilation(TestConv3dTransposeOp):
|
|
|
|
|
|
|
|
def init_test_case(self):
|
|
|
|
|
|
|
|
self.pad = [1, 1, 1]
|
|
|
|
|
|
|
|
self.stride = [1, 1, 1]
|
|
|
|
|
|
|
|
self.dilations = [2, 2, 2]
|
|
|
|
|
|
|
|
self.input_size = [2, 3, 5, 5, 5] # NCDHW
|
|
|
|
|
|
|
|
f_c = self.input_size[1]
|
|
|
|
|
|
|
|
self.filter_size = [f_c, 6, 3, 3, 3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ------------ test_cudnn ------------
|
|
|
|
# ------------ test_cudnn ------------
|
|
|
|
class TestCudnn(TestConv3dTransposeOp):
|
|
|
|
class TestCudnn(TestConv3dTransposeOp):
|
|
|
|
def init_op_type(self):
|
|
|
|
def init_op_type(self):
|
|
|
|
self.op_type = "conv3d_transpose_cudnn"
|
|
|
|
self.op_type = "conv3d_transpose_cudnn"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestCudnnWithPad(TestWithPad):
|
|
|
|
|
|
|
|
def init_test_case(self):
|
|
|
|
|
|
|
|
self.pad = [1, 1, 1]
|
|
|
|
|
|
|
|
self.stride = [1, 1, 1]
|
|
|
|
|
|
|
|
self.dilations = [1, 1, 1]
|
|
|
|
|
|
|
|
self.input_size = [2, 3, 5, 5, 5] # NCDHW
|
|
|
|
|
|
|
|
f_c = self.input_size[1]
|
|
|
|
|
|
|
|
self.filter_size = [f_c, 6, 3, 3, 3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_op_type(self):
|
|
|
|
|
|
|
|
self.op_type = "conv3d_transpose_cudnn"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestCudnnWithStride(TestWithStride):
|
|
|
|
|
|
|
|
def init_test_case(self):
|
|
|
|
|
|
|
|
self.pad = [1, 1, 1]
|
|
|
|
|
|
|
|
self.stride = [2, 2, 2]
|
|
|
|
|
|
|
|
self.dilations = [1, 1, 1]
|
|
|
|
|
|
|
|
self.input_size = [2, 3, 5, 5, 5] # NCDHW
|
|
|
|
|
|
|
|
f_c = self.input_size[1]
|
|
|
|
|
|
|
|
self.filter_size = [f_c, 6, 3, 3, 3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_op_type(self):
|
|
|
|
|
|
|
|
self.op_type = "conv3d_transpose_cudnn"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# #cudnn v5 does not support dilation conv.
|
|
|
|
|
|
|
|
# class TestCudnnWithDilation(TestWithDilation):
|
|
|
|
|
|
|
|
# def init_test_case(self):
|
|
|
|
|
|
|
|
# self.pad = [1, 1, 1]
|
|
|
|
|
|
|
|
# self.stride = [2, 2, 2]
|
|
|
|
|
|
|
|
# self.dilations = [2, 2, 2]
|
|
|
|
|
|
|
|
# self.input_size = [2, 3, 5, 5, 5] # NCDHW
|
|
|
|
|
|
|
|
# f_c = self.input_size[1]
|
|
|
|
|
|
|
|
# self.filter_size = [f_c, 6, 3, 3, 3]
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# def init_op_type(self):
|
|
|
|
|
|
|
|
# self.op_type = "conv3d_transpose_cudnn"
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|
|
|
|
unittest.main()
|
|
|
|