|
|
|
@ -1226,26 +1226,23 @@ def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
|
|
|
|
|
|
|
|
|
|
Code Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# example 1
|
|
|
|
|
x_shape = (1, 1, 3)
|
|
|
|
|
x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
|
|
|
|
|
tensor_x = paddle.to_tensor(x)
|
|
|
|
|
y = F.pad(tensor_x, pad=[2, 3], value=1, mode='constant')
|
|
|
|
|
print(y.numpy())
|
|
|
|
|
x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
|
|
|
|
|
y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
|
|
|
|
|
print(y)
|
|
|
|
|
# [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
|
|
|
|
|
|
|
|
|
|
# example 2
|
|
|
|
|
x_shape = (1, 1, 2, 3)
|
|
|
|
|
x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
|
|
|
|
|
tensor_x = paddle.to_tensor(x)
|
|
|
|
|
y = F.pad(tensor_x, pad=[1, 2, 1, 1], value=1, mode='circular')
|
|
|
|
|
print(y.numpy())
|
|
|
|
|
x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
|
|
|
|
|
y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
|
|
|
|
|
print(y)
|
|
|
|
|
# [[[[6. 4. 5. 6. 4. 5.]
|
|
|
|
|
# [3. 1. 2. 3. 1. 2.]
|
|
|
|
|
# [6. 4. 5. 6. 4. 5.]
|
|
|
|
@ -1361,6 +1358,7 @@ def cosine_similarity(x1, x2, axis=1, eps=1e-8):
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: text
|
|
|
|
|
|
|
|
|
|
Case 0:
|
|
|
|
|
x1 = [[0.8024077 0.9927354 0.27238318 0.8344984 ]
|
|
|
|
|
[0.48949873 0.5797396 0.65444374 0.66510963]
|
|
|
|
@ -1376,10 +1374,10 @@ def cosine_similarity(x1, x2, axis=1, eps=1e-8):
|
|
|
|
|
|
|
|
|
|
Code Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
np.random.seed(0)
|
|
|
|
|
x1 = np.random.rand(2,3)
|
|
|
|
@ -1387,7 +1385,7 @@ def cosine_similarity(x1, x2, axis=1, eps=1e-8):
|
|
|
|
|
x1 = paddle.to_tensor(x1)
|
|
|
|
|
x2 = paddle.to_tensor(x2)
|
|
|
|
|
result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
|
|
|
|
|
print(result.numpy())
|
|
|
|
|
print(result)
|
|
|
|
|
# [0.99806249 0.9817672 0.94987036]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|