parent
1e0a78556d
commit
f8271649b4
@ -0,0 +1,68 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
from .. import layers
|
||||
from .. import unique_name
|
||||
|
||||
__all__ = [
|
||||
'ExponentialDecay', 'NaturalExpDecay', 'InverseTimeDecay',
|
||||
'PolynomialDecay', 'PiecewiseDecay', 'NoamDecay'
|
||||
]
|
||||
|
||||
|
||||
class LearningRateDecay(object):
|
||||
"""
|
||||
Base class of learning rate decay
|
||||
"""
|
||||
|
||||
def __init__(self, step, dtype='float32'):
|
||||
self.step = step
|
||||
self.dtype = dtype
|
||||
|
||||
def __call__(self):
|
||||
lr = self.step()
|
||||
if isinstance(lr, float):
|
||||
lr = self._create_lr_var(lr)
|
||||
self.step += 1
|
||||
return lr
|
||||
|
||||
def create_lr_var(lr):
|
||||
lr = layers.create_global_var(
|
||||
name=unique_name.generate("learning_rate"),
|
||||
shape=[1],
|
||||
value=float(lr),
|
||||
dtype=self.dtype,
|
||||
persistable=True)
|
||||
|
||||
def step(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class PiecewiseDecay(object):
|
||||
def __init__(self, boundaries, values, step, dtype='float32'):
|
||||
super(PiecewiseDecay, self).__init__(step, dtype)
|
||||
self.boundaries = boundaries
|
||||
self.values = values
|
||||
|
||||
self.vars = []
|
||||
for value in values:
|
||||
self.vars.append(self.create_lr_var(value))
|
||||
|
||||
def step(self):
|
||||
for i in range(len(boundaries)):
|
||||
if self.step <= boundaries[i]:
|
||||
return self.vars[i]
|
||||
return self.vars[len(values) - 1]
|
Loading…
Reference in new issue