Merge pull request #4121 from zchen0211/develop
Prelu with forward, backward and python test passedupdate-doc-pybind
commit
f86c1ccdbe
@ -0,0 +1,94 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/prelu_op.h"
|
||||
#include "paddle/operators/net_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class PReluOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||
auto *in = ctx.Input<framework::Tensor>("X");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Alpha"),
|
||||
"Input(Alpha) should not be null");
|
||||
auto *alpha = ctx.Input<framework::Tensor>("Alpha");
|
||||
PADDLE_ENFORCE(alpha->numel() == 1, "Size of weight Alpha must be one.");
|
||||
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
|
||||
"Output(Out) should not be null");
|
||||
auto *out = ctx.Output<framework::LoDTensor>("Out");
|
||||
out->Resize(in->dims());
|
||||
}
|
||||
};
|
||||
|
||||
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
PReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The input tensor of prelu operator.");
|
||||
AddInput("Alpha", "The alpha weight of PRelu operator.");
|
||||
AddOutput("Out", "The output tensor of PRelu operator.");
|
||||
AddComment(R"DOC(PRelu operator
|
||||
|
||||
The equation is:
|
||||
|
||||
f(x) = alpha * x , for x < 0
|
||||
f(x) = x , for x >= 0
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
// The operator to calculate gradients of a prelu operator.
|
||||
class PReluGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null");
|
||||
auto *dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||
auto *x = ctx.Input<framework::Tensor>("X");
|
||||
|
||||
auto *dalpha =
|
||||
ctx.Output<framework::LoDTensor>(framework::GradVarName("Alpha"));
|
||||
auto *alpha = ctx.Input<framework::Tensor>("Alpha");
|
||||
|
||||
dx->Resize(x->dims());
|
||||
dalpha->Resize(alpha->dims());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP(prelu, ops::PReluOp, ops::PReluOpMaker, prelu_grad,
|
||||
ops::PReluGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(prelu,
|
||||
ops::PReluKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(prelu_grad,
|
||||
ops::PReluGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,21 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/prelu_op.h"
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
prelu, paddle::operators::PReluKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
prelu_grad,
|
||||
paddle::operators::PReluGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,103 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/platform/transform.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
using platform::Transform;
|
||||
|
||||
template <typename T>
|
||||
class PReluFunctor {
|
||||
public:
|
||||
explicit PReluFunctor(const T* alpha) : alpha_(alpha) {}
|
||||
|
||||
HOSTDEVICE T operator()(const T& x) const {
|
||||
if (x > 0)
|
||||
return x;
|
||||
else
|
||||
return x * (*alpha_);
|
||||
}
|
||||
|
||||
private:
|
||||
const T* alpha_;
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class PReluKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* x = context.Input<Tensor>("X");
|
||||
auto* alpha = context.Input<Tensor>("Alpha");
|
||||
auto* out = context.Output<Tensor>("Out");
|
||||
|
||||
const T* x_ptr = x->data<T>();
|
||||
T* o_ptr = out->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto* alpha_ptr = alpha->data<T>();
|
||||
|
||||
int numel = x->numel();
|
||||
|
||||
auto place = context.GetPlace();
|
||||
Transform(place, x_ptr, x_ptr + numel, o_ptr, PReluFunctor<T>(alpha_ptr));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class PReluGradFunctor {
|
||||
public:
|
||||
explicit PReluGradFunctor(const T* alpha) : alpha_(alpha) {}
|
||||
|
||||
HOSTDEVICE T operator()(const T& out, const T& dout) const {
|
||||
if (out > 0)
|
||||
return dout;
|
||||
else
|
||||
return dout * (*alpha_);
|
||||
}
|
||||
|
||||
private:
|
||||
const T* alpha_;
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class PReluGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
|
||||
auto* out = context.Input<Tensor>("Out");
|
||||
auto* alpha = context.Input<Tensor>("Alpha");
|
||||
auto* alpha_ptr = alpha->data<T>();
|
||||
|
||||
T* dx_ptr = dx->mutable_data<T>(context.GetPlace());
|
||||
const T* dout_ptr = dout->data<T>();
|
||||
const T* out_ptr = out->data<T>();
|
||||
int numel = dx->numel();
|
||||
|
||||
auto place = context.GetPlace();
|
||||
Transform(place, out_ptr, out_ptr + numel, dout_ptr, dx_ptr,
|
||||
PReluGradFunctor<T>(alpha_ptr));
|
||||
|
||||
// TODO (Zhuoyuan): add dalpha upgrade when GPU kernels ready
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,28 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class PReluTest(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "prelu"
|
||||
x_np = np.random.normal(size=(10, 10)).astype("float32")
|
||||
x_np_sign = np.sign(x_np)
|
||||
x_np = x_np_sign * np.maximum(x_np, .005)
|
||||
alpha_np = np.array([.1])
|
||||
self.inputs = {'X': x_np, 'Alpha': alpha_np}
|
||||
out_np = np.maximum(self.inputs['X'], 0.)
|
||||
out_np = out_np + np.minimum(self.inputs['X'],
|
||||
0.) * self.inputs['Alpha']
|
||||
assert out_np is not self.inputs['X']
|
||||
self.outputs = {'Out': out_np}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue