Dev/add l1 loss (#23322)
* add L1Loss * support L1Loss, test=develop * add test, test=develop * fix batch, test=develop * follow comments, test=developrevert-23830-2.0-beta
parent
93ea9dd27a
commit
f944b0f6fc
@ -0,0 +1,131 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
|
||||
class TestL1Loss(unittest.TestCase):
|
||||
def test_L1Loss_mean(self):
|
||||
input_np = np.random.random(size=(10, 1)).astype(np.float32)
|
||||
label_np = np.random.random(size=(10, 1)).astype(np.float32)
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
input = fluid.layers.data(
|
||||
name='input', shape=[10, 1], dtype='float32')
|
||||
label = fluid.layers.data(
|
||||
name='label', shape=[10, 1], dtype='float32')
|
||||
l1_loss = paddle.nn.loss.L1Loss()
|
||||
ret = l1_loss(input, label)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
static_result = exe.run(
|
||||
prog,
|
||||
feed={"input": input_np,
|
||||
"label": label_np},
|
||||
fetch_list=[ret])
|
||||
|
||||
with fluid.dygraph.guard():
|
||||
l1_loss = paddle.nn.loss.L1Loss()
|
||||
dy_ret = l1_loss(
|
||||
fluid.dygraph.to_variable(input_np),
|
||||
fluid.dygraph.to_variable(label_np))
|
||||
dy_result = dy_ret.numpy()
|
||||
|
||||
expected = np.mean(np.abs(input_np - label_np))
|
||||
self.assertTrue(np.allclose(static_result, expected))
|
||||
self.assertTrue(np.allclose(static_result, dy_result))
|
||||
self.assertTrue(np.allclose(dy_result, expected))
|
||||
self.assertTrue(dy_result.shape, [1])
|
||||
|
||||
def test_L1Loss_sum(self):
|
||||
input_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
|
||||
label_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
input = fluid.layers.data(
|
||||
name='input', shape=[10, 10, 5], dtype='float32')
|
||||
label = fluid.layers.data(
|
||||
name='label', shape=[10, 10, 5], dtype='float32')
|
||||
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
|
||||
ret = l1_loss(input, label)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
static_result = exe.run(
|
||||
prog,
|
||||
feed={"input": input_np,
|
||||
"label": label_np},
|
||||
fetch_list=[ret])
|
||||
|
||||
with fluid.dygraph.guard():
|
||||
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
|
||||
dy_ret = l1_loss(
|
||||
fluid.dygraph.to_variable(input_np),
|
||||
fluid.dygraph.to_variable(label_np))
|
||||
dy_result = dy_ret.numpy()
|
||||
|
||||
expected = np.sum(np.abs(input_np - label_np))
|
||||
self.assertTrue(np.allclose(static_result, expected))
|
||||
self.assertTrue(np.allclose(static_result, dy_result))
|
||||
self.assertTrue(np.allclose(dy_result, expected))
|
||||
self.assertTrue(dy_result.shape, [1])
|
||||
|
||||
def test_L1Loss_none(self):
|
||||
input_np = np.random.random(size=(10, 5)).astype(np.float32)
|
||||
label_np = np.random.random(size=(10, 5)).astype(np.float32)
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
input = fluid.layers.data(
|
||||
name='input', shape=[10, 5], dtype='float32')
|
||||
label = fluid.layers.data(
|
||||
name='label', shape=[10, 5], dtype='float32')
|
||||
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
|
||||
ret = l1_loss(input, label)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
static_result = exe.run(
|
||||
prog,
|
||||
feed={"input": input_np,
|
||||
"label": label_np},
|
||||
fetch_list=[ret])
|
||||
|
||||
with fluid.dygraph.guard():
|
||||
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
|
||||
dy_ret = l1_loss(
|
||||
fluid.dygraph.to_variable(input_np),
|
||||
fluid.dygraph.to_variable(label_np))
|
||||
dy_result = dy_ret.numpy()
|
||||
|
||||
expected = np.abs(input_np - label_np)
|
||||
self.assertTrue(np.allclose(static_result, expected))
|
||||
self.assertTrue(np.allclose(static_result, dy_result))
|
||||
self.assertTrue(np.allclose(dy_result, expected))
|
||||
self.assertTrue(dy_result.shape, input.shape)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,18 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO: define activation functions of neural network
|
||||
|
||||
from . import loss
|
||||
__all__ = [loss]
|
Loading…
Reference in new issue