cross_channel_norm
peterzhang2029 7 years ago
parent cd5fad13ce
commit f9ef6d1519

@ -47,8 +47,8 @@ class AdagradOpKernel : public framework::OpKernel<T> {
*ctx.Input<framework::Tensor>("Grad")); *ctx.Input<framework::Tensor>("Grad"));
auto moment = framework::EigenVector<T>::Flatten( auto moment = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Moment")); *ctx.Input<framework::Tensor>("Moment"));
auto lr = framework::EigenVector<T>::Flatten( auto* learning_rate = ctx.Input<framework::Tensor>("LearningRate");
*ctx.Input<framework::Tensor>("LearningRate")); auto* lr = learning_rate->data<T>();
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor); auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor); auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
@ -57,7 +57,7 @@ class AdagradOpKernel : public framework::OpKernel<T> {
moment_out.device(*place) = moment + grad * grad; moment_out.device(*place) = moment + grad * grad;
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel()); Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
param_out.device(*place) = param_out.device(*place) =
param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); param - lr[0] * grad / (moment_out.sqrt() + epsilon);
} else if (grad_var->IsType<framework::SelectedRows>()) { } else if (grad_var->IsType<framework::SelectedRows>()) {
auto* param_tensor = ctx.Input<framework::Tensor>("Param"); auto* param_tensor = ctx.Input<framework::Tensor>("Param");
PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor); PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor);

Loading…
Cancel
Save