[NPU] Support NPU kernel of stack op (#31711)
parent
d55120d77f
commit
faf40da585
@ -0,0 +1,106 @@
|
|||||||
|
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#ifdef PADDLE_WITH_ASCEND_CL
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/activation_op.h"
|
||||||
|
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||||
|
#include "paddle/fluid/operators/stack_op.h"
|
||||||
|
#include "paddle/fluid/operators/unsqueeze_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class StackNPUKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto x = ctx.MultiInput<Tensor>("X");
|
||||||
|
int32_t N = x.size();
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_GT(
|
||||||
|
N, 0, platform::errors::InvalidArgument("number of input Tensor <= 0"));
|
||||||
|
|
||||||
|
std::vector<paddle::framework::Tensor> x_list;
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
x_list.push_back(*x[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
int axis = ctx.Attr<int>("axis");
|
||||||
|
|
||||||
|
if (axis < 0) {
|
||||||
|
axis = axis + x_list[0].dims().size() + 1;
|
||||||
|
}
|
||||||
|
auto* out = ctx.Output<Tensor>("Y");
|
||||||
|
|
||||||
|
auto place = ctx.GetPlace();
|
||||||
|
|
||||||
|
auto stream =
|
||||||
|
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||||
|
.stream();
|
||||||
|
|
||||||
|
out->mutable_data<T>(place);
|
||||||
|
|
||||||
|
if (axis != 0) {
|
||||||
|
auto x_dim = x_list[0].dims();
|
||||||
|
std::vector<int> vec_dim_tmp;
|
||||||
|
vec_dim_tmp.push_back(N);
|
||||||
|
for (auto i = 0; i < x_dim.size(); ++i) {
|
||||||
|
vec_dim_tmp.push_back(x_dim[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
Tensor tmp_stack(out->type());
|
||||||
|
tmp_stack.Resize(framework::make_ddim(vec_dim_tmp));
|
||||||
|
tmp_stack.mutable_data<T>(ctx.GetPlace());
|
||||||
|
|
||||||
|
auto runner =
|
||||||
|
NpuOpRunner("Pack", {x_list}, {tmp_stack}, {{"axis", 0}, {"N", N}});
|
||||||
|
runner.Run(stream);
|
||||||
|
|
||||||
|
std::vector<int64_t> vec_trans;
|
||||||
|
for (auto i = 1; i <= x_dim.size(); ++i) {
|
||||||
|
vec_trans.push_back(i);
|
||||||
|
if (i == axis) {
|
||||||
|
vec_trans.push_back(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
auto runner_trans_final =
|
||||||
|
NpuOpRunner("TransposeD", {tmp_stack}, {*out}, {{"perm", vec_trans}});
|
||||||
|
runner_trans_final.Run(stream);
|
||||||
|
|
||||||
|
} else {
|
||||||
|
auto runner =
|
||||||
|
NpuOpRunner("Pack", {x_list}, {*out}, {{"axis", axis}, {"N", N}});
|
||||||
|
runner.Run(stream);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_NPU_KERNEL(
|
||||||
|
stack, ops::StackNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||||
|
ops::StackNPUKernel<paddle::platform::NPUDeviceContext,
|
||||||
|
paddle::platform::float16>);
|
||||||
|
|
||||||
|
#endif
|
@ -0,0 +1,153 @@
|
|||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import unittest
|
||||||
|
import sys
|
||||||
|
sys.path.append("..")
|
||||||
|
from op_test import OpTest
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
|
||||||
|
paddle.enable_static()
|
||||||
|
SEED = 2021
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||||
|
"core is not compiled with NPU")
|
||||||
|
class TestStack1(OpTest):
|
||||||
|
def initDefaultParameters(self):
|
||||||
|
self.num_inputs = 4
|
||||||
|
self.input_dim = (5, 6, 7)
|
||||||
|
self.axis = 0
|
||||||
|
self.dtype = 'float32'
|
||||||
|
|
||||||
|
def get_x_names(self):
|
||||||
|
x_names = []
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
x_names.append('x{}'.format(i))
|
||||||
|
return x_names
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.initDefaultParameters()
|
||||||
|
self.set_npu()
|
||||||
|
self.op_type = "stack"
|
||||||
|
self.place = paddle.NPUPlace(0)
|
||||||
|
|
||||||
|
self.x = []
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
self.x.append(
|
||||||
|
np.random.random(size=self.input_dim).astype(self.dtype))
|
||||||
|
|
||||||
|
tmp = []
|
||||||
|
x_names = self.get_x_names()
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
tmp.append((x_names[i], self.x[i]))
|
||||||
|
|
||||||
|
self.inputs = {'X': tmp}
|
||||||
|
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
|
||||||
|
self.attrs = {'axis': self.axis}
|
||||||
|
|
||||||
|
def set_npu(self):
|
||||||
|
self.__class__.use_npu = True
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output_with_place(self.place, check_dygraph=False)
|
||||||
|
|
||||||
|
|
||||||
|
class TestStack2(OpTest):
|
||||||
|
def initDefaultParameters(self):
|
||||||
|
self.num_inputs = 4
|
||||||
|
self.input_dim = (2, 3, 4)
|
||||||
|
self.axis = -1
|
||||||
|
self.dtype = 'float32'
|
||||||
|
|
||||||
|
def get_x_names(self):
|
||||||
|
x_names = []
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
x_names.append('x{}'.format(i))
|
||||||
|
return x_names
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.initDefaultParameters()
|
||||||
|
self.set_npu()
|
||||||
|
self.op_type = "stack"
|
||||||
|
self.place = paddle.NPUPlace(0)
|
||||||
|
|
||||||
|
self.x = []
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
self.x.append(
|
||||||
|
np.random.random(size=self.input_dim).astype(self.dtype))
|
||||||
|
|
||||||
|
tmp = []
|
||||||
|
x_names = self.get_x_names()
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
tmp.append((x_names[i], self.x[i]))
|
||||||
|
|
||||||
|
self.inputs = {'X': tmp}
|
||||||
|
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
|
||||||
|
self.attrs = {'axis': self.axis}
|
||||||
|
|
||||||
|
def set_npu(self):
|
||||||
|
self.__class__.use_npu = True
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output_with_place(self.place, check_dygraph=False)
|
||||||
|
|
||||||
|
|
||||||
|
class TestStack3(OpTest):
|
||||||
|
def initDefaultParameters(self):
|
||||||
|
self.num_inputs = 4
|
||||||
|
self.input_dim = (2, 3, 4)
|
||||||
|
self.axis = 1
|
||||||
|
self.dtype = 'float32'
|
||||||
|
|
||||||
|
def get_x_names(self):
|
||||||
|
x_names = []
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
x_names.append('x{}'.format(i))
|
||||||
|
return x_names
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.initDefaultParameters()
|
||||||
|
self.set_npu()
|
||||||
|
self.op_type = "stack"
|
||||||
|
self.place = paddle.NPUPlace(0)
|
||||||
|
|
||||||
|
self.x = []
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
self.x.append(
|
||||||
|
np.random.random(size=self.input_dim).astype(self.dtype))
|
||||||
|
|
||||||
|
tmp = []
|
||||||
|
x_names = self.get_x_names()
|
||||||
|
for i in range(self.num_inputs):
|
||||||
|
tmp.append((x_names[i], self.x[i]))
|
||||||
|
|
||||||
|
self.inputs = {'X': tmp}
|
||||||
|
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
|
||||||
|
self.attrs = {'axis': self.axis}
|
||||||
|
|
||||||
|
def set_npu(self):
|
||||||
|
self.__class__.use_npu = True
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output_with_place(self.place, check_dygraph=False)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue