commit
fafd3e0fc0
@ -0,0 +1,132 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/sequence_slice_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class SequenceSliceOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||||
|
"Input(X) of SequenceSliceOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Offset"),
|
||||||
|
"Input(Offset) of SequenceSliceOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Length"),
|
||||||
|
"Input(Length) of SequenceSliceOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of SequenceSliceOp should not be null.");
|
||||||
|
auto input_dims = ctx->GetInputDim("X");
|
||||||
|
|
||||||
|
auto offset_dim = ctx->GetInputDim("Offset");
|
||||||
|
auto length_dim = ctx->GetInputDim("Length");
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
offset_dim.size(), 2UL,
|
||||||
|
"Only support one level sequence now, The rank of offset must be 2.");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
length_dim.size(), 2UL,
|
||||||
|
"Only support one level sequence now, The rank of Length must be 2.");
|
||||||
|
|
||||||
|
// Initialize the output's dims to maximum,
|
||||||
|
// and re-set to real dims by the value of Offset and Length at kernel
|
||||||
|
ctx->SetOutputDim("Out", input_dims);
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
framework::OpKernelType GetKernelType(
|
||||||
|
const framework::ExecutionContext& ctx) const override {
|
||||||
|
return framework::OpKernelType(
|
||||||
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
|
||||||
|
ctx.device_context());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SequenceSliceGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||||
|
"The gradient of Out should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
|
||||||
|
"The gradient of X should not be null.");
|
||||||
|
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
framework::OpKernelType GetKernelType(
|
||||||
|
const framework::ExecutionContext& ctx) const override {
|
||||||
|
return framework::OpKernelType(
|
||||||
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
|
||||||
|
ctx.device_context());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SequenceSliceOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
SequenceSliceOpMaker(framework::OpProto* proto,
|
||||||
|
framework::OpAttrChecker* op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X",
|
||||||
|
"(LoDTensor), "
|
||||||
|
"the input of SequenceSliceOp.");
|
||||||
|
AddInput("Offset",
|
||||||
|
"(Tensor), "
|
||||||
|
"a vector<int> to describe the offset of every input sequence for "
|
||||||
|
"sub sequence item.");
|
||||||
|
AddInput("Length",
|
||||||
|
"(Tensor), "
|
||||||
|
"a vector<int> to describe the length of every input sequence for "
|
||||||
|
"sub sequence item.");
|
||||||
|
AddOutput("Out",
|
||||||
|
"(LoDTensor), the output of SequenceSliceOp.");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Sequence slice operator
|
||||||
|
|
||||||
|
The operator crops a subsequence from given sequence with given start offset and subsequence length.
|
||||||
|
It only supports sequence (LoD Tensor with level number is 1).
|
||||||
|
- Case:
|
||||||
|
X = [[a1, a2;
|
||||||
|
b1, b2;
|
||||||
|
c1, c2]
|
||||||
|
[d1, d2;
|
||||||
|
e1, e2]]
|
||||||
|
LoD(X) = {{0, 3, 5}}; Dims(X) = (5, 2)
|
||||||
|
Offset = [[0], [1]]; Length = [[2], [1]]
|
||||||
|
|
||||||
|
Out = [[a1, a2;
|
||||||
|
b1, b2]
|
||||||
|
[e1, e2]]
|
||||||
|
LoD(Out) = {{0, 2, 3}}; Dims(Out) = (3, 2)
|
||||||
|
NOTE: The first dimension size of input, the size of offset and Length, should be equal. The offset start from 0.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(sequence_slice, ops::SequenceSliceOp, ops::SequenceSliceOpMaker,
|
||||||
|
sequence_slice_grad, ops::SequenceSliceGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
sequence_slice,
|
||||||
|
ops::SequenceSliceOpKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
sequence_slice_grad,
|
||||||
|
ops::SequenceSliceGradOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,23 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/sequence_slice_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
sequence_slice,
|
||||||
|
ops::SequenceSliceOpKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
sequence_slice_grad,
|
||||||
|
ops::SequenceSliceGradOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,173 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
#include "paddle/operators/math/math_function.h"
|
||||||
|
#include "paddle/operators/strided_memcpy.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
using LoDTensor = framework::LoDTensor;
|
||||||
|
using LoD = framework::LoD;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data,
|
||||||
|
const int64_t* length_data) {
|
||||||
|
auto out_lod = in.lod();
|
||||||
|
size_t lod_offset = 0;
|
||||||
|
|
||||||
|
auto n = in.lod()[0].size() - 1;
|
||||||
|
out_lod[0][0] = 0;
|
||||||
|
for (size_t i = 0; i < n; ++i) {
|
||||||
|
lod_offset += length_data[i];
|
||||||
|
out_lod[0][i+1] = lod_offset;
|
||||||
|
}
|
||||||
|
return out_lod;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class SequenceSliceOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* in = ctx.Input<LoDTensor>("X");
|
||||||
|
auto* offset = ctx.Input<Tensor>("Offset");
|
||||||
|
auto* length = ctx.Input<Tensor>("Length");
|
||||||
|
auto* out = ctx.Output<LoDTensor>("Out");
|
||||||
|
|
||||||
|
auto lod = in->lod();
|
||||||
|
auto n = lod[0].size() - 1;
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(lod.size(), 1UL,
|
||||||
|
"Only support one level sequence now.");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
n, static_cast<size_t>(length->dims()[0]),
|
||||||
|
"The size of input-sequence and length-array should be the same")
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
n, static_cast<size_t>(offset->dims()[0]),
|
||||||
|
"The size of input-sequence and offset-array should be the same")
|
||||||
|
|
||||||
|
const int64_t* offset_data = offset->data<int64_t>();
|
||||||
|
const int64_t* length_data = length->data<int64_t>();
|
||||||
|
framework::Tensor offset_cpu;
|
||||||
|
framework::Tensor length_cpu;
|
||||||
|
|
||||||
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
||||||
|
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
|
||||||
|
offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context());
|
||||||
|
offset_data = offset_cpu.data<int64_t>();
|
||||||
|
|
||||||
|
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
|
||||||
|
length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context());
|
||||||
|
length_data = length_cpu.data<int64_t>();
|
||||||
|
}
|
||||||
|
|
||||||
|
for (size_t i = 0; i < n; ++i) {
|
||||||
|
PADDLE_ENFORCE_LT(0, offset_data[i],
|
||||||
|
"The offset[%d] must greater than zero.", i)
|
||||||
|
PADDLE_ENFORCE_LT(0, length_data[i],
|
||||||
|
"The length[%d] must greater than zero.", i)
|
||||||
|
PADDLE_ENFORCE_LT(
|
||||||
|
lod[0][i] + offset_data[i] + length_data[i],
|
||||||
|
lod[0][i + 1],
|
||||||
|
"The target tensor's length overflow.")
|
||||||
|
}
|
||||||
|
|
||||||
|
out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
auto out_lod = SequenceSliceLoD(*in, offset_data, length_data);
|
||||||
|
auto out_dims = in->dims();
|
||||||
|
out_dims[0] = out_lod[0][out_lod[0].size() - 1];
|
||||||
|
out->Resize(out_dims);
|
||||||
|
out->set_lod(out_lod);
|
||||||
|
|
||||||
|
auto in_stride = framework::stride(in->dims());
|
||||||
|
auto out_stride = framework::stride(out->dims());
|
||||||
|
|
||||||
|
size_t out_offset = 0;
|
||||||
|
for (size_t i = 0; i < n; ++i) {
|
||||||
|
Tensor in_t =
|
||||||
|
in->Slice(static_cast<int>(lod[0][i] + offset_data[i]),
|
||||||
|
static_cast<int>(lod[0][i] + offset_data[i] +
|
||||||
|
length_data[i]));
|
||||||
|
|
||||||
|
StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(),
|
||||||
|
in_stride, in_t.dims(), out_stride,
|
||||||
|
out->data<T>() + out_offset);
|
||||||
|
out_offset += length_data[i] * in_stride[0];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class SequenceSliceGradOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* in = ctx.Input<LoDTensor>("X");
|
||||||
|
auto* offset = ctx.Input<Tensor>("Offset");
|
||||||
|
auto* length = ctx.Input<Tensor>("Length");
|
||||||
|
auto* out_grad =
|
||||||
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
||||||
|
auto* x_grad =
|
||||||
|
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||||
|
|
||||||
|
const int64_t* offset_data = offset->data<int64_t>();
|
||||||
|
const int64_t* length_data = length->data<int64_t>();
|
||||||
|
framework::Tensor offset_cpu;
|
||||||
|
framework::Tensor length_cpu;
|
||||||
|
|
||||||
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
||||||
|
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
|
||||||
|
offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context());
|
||||||
|
offset_data = offset_cpu.data<int64_t>();
|
||||||
|
|
||||||
|
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
|
||||||
|
length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context());
|
||||||
|
length_data = length_cpu.data<int64_t>();
|
||||||
|
}
|
||||||
|
|
||||||
|
auto lod = in->lod();
|
||||||
|
auto out_lod = out_grad->lod();
|
||||||
|
|
||||||
|
if (x_grad) {
|
||||||
|
x_grad->mutable_data<T>(ctx.GetPlace());
|
||||||
|
x_grad->set_lod(in->lod());
|
||||||
|
math::SetConstant<Place, T> set_zero;
|
||||||
|
set_zero(ctx.device_context(), x_grad, static_cast<T>(0));
|
||||||
|
|
||||||
|
auto out_grad_stride = framework::stride(out_grad->dims());
|
||||||
|
|
||||||
|
for (size_t i = 0; i < out_lod[0].size() - 1; ++i) {
|
||||||
|
Tensor out_grad_t =
|
||||||
|
out_grad->Slice(static_cast<int>(out_lod[0][i]),
|
||||||
|
static_cast<int>(out_lod[0][i + 1]));
|
||||||
|
auto out_grad_stride = framework::stride(out_grad_t.dims());
|
||||||
|
|
||||||
|
auto x_grad_stride = framework::stride(x_grad->dims());
|
||||||
|
|
||||||
|
Tensor x_grad_t = x_grad->Slice(
|
||||||
|
static_cast<int>(lod[0][i] + offset_data[i]),
|
||||||
|
static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));
|
||||||
|
|
||||||
|
StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>(),
|
||||||
|
out_grad_stride, out_grad_t.dims(), x_grad_stride,
|
||||||
|
x_grad_t.data<T>());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,47 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
import sys
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestSequenceSliceOp(OpTest):
|
||||||
|
def set_data(self):
|
||||||
|
self.init_test_case()
|
||||||
|
# only supprot one level LoD
|
||||||
|
x = np.random.random(self.x_dim).astype('float32')
|
||||||
|
lod = self.x_lod
|
||||||
|
offset = np.array(self.offset).astype("int64")
|
||||||
|
length = np.array(self.length).astype("int64")
|
||||||
|
|
||||||
|
self.inputs = {'X': (x, lod), 'Offset': offset, 'Length': length}
|
||||||
|
outs = [] #np.zeros((100, 3, 2)).astype('float32')
|
||||||
|
out_lod = [[0]]
|
||||||
|
out_lod_offset = 0
|
||||||
|
for i in range(len(offset)):
|
||||||
|
sub_x = x[lod[0][i] + offset[i, 0]:lod[0][i] + offset[i, 0] +
|
||||||
|
length[i, 0], :]
|
||||||
|
out_lod_offset = out_lod_offset + len(sub_x)
|
||||||
|
outs.append(sub_x)
|
||||||
|
out_lod[0].append(out_lod_offset)
|
||||||
|
outs = np.concatenate(outs, axis=0)
|
||||||
|
self.outputs = {'Out': (outs, out_lod)}
|
||||||
|
|
||||||
|
def init_test_case(self):
|
||||||
|
self.x_dim = (100, 3, 2)
|
||||||
|
self.x_lod = [[0, 20, 40, 60, 80, 100]]
|
||||||
|
self.offset = [[1], [2], [3], [4], [5]]
|
||||||
|
self.length = [[10], [8], [6], [4], [2]]
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "sequence_slice"
|
||||||
|
self.set_data()
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(['X'], 'Out')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue