|
|
|
@ -19,57 +19,81 @@ import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestAllcloseLayer(unittest.TestCase):
|
|
|
|
|
def allclose_check(self, use_cuda):
|
|
|
|
|
a = fluid.data(name="a", shape=[2], dtype='float32')
|
|
|
|
|
b = fluid.data(name="b", shape=[2], dtype='float32')
|
|
|
|
|
def allclose_check(self, use_cuda, dtype='float32'):
|
|
|
|
|
a = fluid.data(name="a", shape=[2], dtype=dtype)
|
|
|
|
|
b = fluid.data(name="b", shape=[2], dtype=dtype)
|
|
|
|
|
|
|
|
|
|
result = paddle.allclose(
|
|
|
|
|
a, b, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan")
|
|
|
|
|
result_nan = paddle.allclose(
|
|
|
|
|
a, b, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan")
|
|
|
|
|
result_corner = paddle.allclose(
|
|
|
|
|
a, b, rtol=0.01, atol=0.0, name="corner_case")
|
|
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
|
|
x = np.array([10000., 1e-07]).astype("float32")
|
|
|
|
|
y = np.array([10000.1, 1e-08]).astype("float32")
|
|
|
|
|
x = np.array([10000., 1e-07]).astype(dtype)
|
|
|
|
|
y = np.array([10000.1, 1e-08]).astype(dtype)
|
|
|
|
|
result_v, result_nan_v = exe.run(feed={'a': x,
|
|
|
|
|
'b': y},
|
|
|
|
|
fetch_list=[result, result_nan])
|
|
|
|
|
self.assertEqual(result_v[0], False)
|
|
|
|
|
self.assertEqual(result_nan_v[0], False)
|
|
|
|
|
|
|
|
|
|
x = np.array([10000., 1e-08]).astype("float32")
|
|
|
|
|
y = np.array([10000.1, 1e-09]).astype("float32")
|
|
|
|
|
x = np.array([10000., 1e-08]).astype(dtype)
|
|
|
|
|
y = np.array([10000.1, 1e-09]).astype(dtype)
|
|
|
|
|
result_v, result_nan_v = exe.run(feed={'a': x,
|
|
|
|
|
'b': y},
|
|
|
|
|
fetch_list=[result, result_nan])
|
|
|
|
|
self.assertEqual(result_v[0], True)
|
|
|
|
|
self.assertEqual(result_nan_v[0], True)
|
|
|
|
|
|
|
|
|
|
x = np.array([1.0, float('nan')]).astype("float32")
|
|
|
|
|
y = np.array([1.0, float('nan')]).astype("float32")
|
|
|
|
|
x = np.array([1.0, float('nan')]).astype(dtype)
|
|
|
|
|
y = np.array([1.0, float('nan')]).astype(dtype)
|
|
|
|
|
result_v, result_nan_v = exe.run(feed={'a': x,
|
|
|
|
|
'b': y},
|
|
|
|
|
fetch_list=[result, result_nan])
|
|
|
|
|
self.assertEqual(result_v[0], False)
|
|
|
|
|
self.assertEqual(result_nan_v[0], True)
|
|
|
|
|
|
|
|
|
|
def test_allclose_cpu(self):
|
|
|
|
|
# for corner case
|
|
|
|
|
x = np.array([10.1, 10.1]).astype(dtype)
|
|
|
|
|
y = np.array([10, 10]).astype(dtype)
|
|
|
|
|
result_c, = exe.run(feed={'a': x, 'b': y}, fetch_list=[result_corner])
|
|
|
|
|
corner_res = (dtype == 'float64')
|
|
|
|
|
self.assertEqual(result_c[0], corner_res)
|
|
|
|
|
|
|
|
|
|
def test_allclose_cpu_fp32(self):
|
|
|
|
|
main = fluid.Program()
|
|
|
|
|
startup = fluid.Program()
|
|
|
|
|
with fluid.unique_name.guard():
|
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
|
self.allclose_check(use_cuda=False, dtype='float32')
|
|
|
|
|
|
|
|
|
|
def test_allclose_cpu_fp64(self):
|
|
|
|
|
main = fluid.Program()
|
|
|
|
|
startup = fluid.Program()
|
|
|
|
|
with fluid.unique_name.guard():
|
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
|
self.allclose_check(use_cuda=False)
|
|
|
|
|
self.allclose_check(use_cuda=False, dtype='float64')
|
|
|
|
|
|
|
|
|
|
def test_allclose_gpu_fp32(self):
|
|
|
|
|
if fluid.core.is_compiled_with_cuda():
|
|
|
|
|
main = fluid.Program()
|
|
|
|
|
startup = fluid.Program()
|
|
|
|
|
with fluid.unique_name.guard():
|
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
|
self.allclose_check(use_cuda=True, dtype='float32')
|
|
|
|
|
|
|
|
|
|
def test_allclose_gpu(self):
|
|
|
|
|
def test_allclose_gpu_fp64(self):
|
|
|
|
|
if fluid.core.is_compiled_with_cuda():
|
|
|
|
|
main = fluid.Program()
|
|
|
|
|
startup = fluid.Program()
|
|
|
|
|
with fluid.unique_name.guard():
|
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
|
self.allclose_check(use_cuda=True)
|
|
|
|
|
self.allclose_check(use_cuda=True, dtype='float64')
|
|
|
|
|
|
|
|
|
|
def test_dygraph_mode(self):
|
|
|
|
|
x_1 = np.array([10000., 1e-07]).astype("float32")
|
|
|
|
@ -78,10 +102,14 @@ class TestAllcloseLayer(unittest.TestCase):
|
|
|
|
|
y_2 = np.array([10000.1, 1e-09]).astype("float32")
|
|
|
|
|
x_3 = np.array([1.0, float('nan')]).astype("float32")
|
|
|
|
|
y_3 = np.array([1.0, float('nan')]).astype("float32")
|
|
|
|
|
x_4 = np.array([10.1]).astype("float32")
|
|
|
|
|
y_4 = np.array([10]).astype("float32")
|
|
|
|
|
x_5 = np.array([10.1]).astype("float64")
|
|
|
|
|
y_5 = np.array([10]).astype("float64")
|
|
|
|
|
|
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
|
x_v_1 = fluid.dygraph.to_variable(x_1)
|
|
|
|
|
y_v_1 = fluid.dygraph.to_variable(y_1)
|
|
|
|
|
x_v_1 = paddle.to_tensor(x_1)
|
|
|
|
|
y_v_1 = paddle.to_tensor(y_1)
|
|
|
|
|
ret_1 = paddle.allclose(
|
|
|
|
|
x_v_1,
|
|
|
|
|
y_v_1,
|
|
|
|
@ -98,8 +126,8 @@ class TestAllcloseLayer(unittest.TestCase):
|
|
|
|
|
equal_nan=True,
|
|
|
|
|
name='test_2')
|
|
|
|
|
self.assertEqual(ret_1.numpy()[0], False)
|
|
|
|
|
x_v_2 = fluid.dygraph.to_variable(x_2)
|
|
|
|
|
y_v_2 = fluid.dygraph.to_variable(y_2)
|
|
|
|
|
x_v_2 = paddle.to_tensor(x_2)
|
|
|
|
|
y_v_2 = paddle.to_tensor(y_2)
|
|
|
|
|
ret_2 = paddle.allclose(
|
|
|
|
|
x_v_2,
|
|
|
|
|
y_v_2,
|
|
|
|
@ -116,8 +144,8 @@ class TestAllcloseLayer(unittest.TestCase):
|
|
|
|
|
equal_nan=True,
|
|
|
|
|
name='test_4')
|
|
|
|
|
self.assertEqual(ret_2.numpy()[0], True)
|
|
|
|
|
x_v_3 = fluid.dygraph.to_variable(x_3)
|
|
|
|
|
y_v_3 = fluid.dygraph.to_variable(y_3)
|
|
|
|
|
x_v_3 = paddle.to_tensor(x_3)
|
|
|
|
|
y_v_3 = paddle.to_tensor(y_3)
|
|
|
|
|
ret_3 = paddle.allclose(
|
|
|
|
|
x_v_3,
|
|
|
|
|
y_v_3,
|
|
|
|
@ -134,6 +162,17 @@ class TestAllcloseLayer(unittest.TestCase):
|
|
|
|
|
equal_nan=True,
|
|
|
|
|
name='test_6')
|
|
|
|
|
self.assertEqual(ret_3.numpy()[0], True)
|
|
|
|
|
# for corner case
|
|
|
|
|
x_v_4 = paddle.to_tensor(x_4)
|
|
|
|
|
y_v_4 = paddle.to_tensor(y_4)
|
|
|
|
|
ret_4 = paddle.allclose(
|
|
|
|
|
x_v_4, y_v_4, rtol=0.01, atol=0.0, name='test_7')
|
|
|
|
|
self.assertEqual(ret_4.numpy()[0], False)
|
|
|
|
|
x_v_5 = paddle.to_tensor(x_5)
|
|
|
|
|
y_v_5 = paddle.to_tensor(y_5)
|
|
|
|
|
ret_5 = paddle.allclose(
|
|
|
|
|
x_v_5, y_v_5, rtol=0.01, atol=0.0, name='test_8')
|
|
|
|
|
self.assertEqual(ret_5.numpy()[0], True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|