|
|
|
@ -18,81 +18,91 @@ import numpy as np
|
|
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
from paddle.fluid import core
|
|
|
|
|
from paddle.fluid.imperative.nn import Conv2D
|
|
|
|
|
from paddle.fluid.imperative.nn import Conv2D, Pool2D
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SimpleImgConvPool(fluid.imperative.PyLayer):
|
|
|
|
|
def __init__(self,
|
|
|
|
|
num_channels,
|
|
|
|
|
num_filters,
|
|
|
|
|
filter_size,
|
|
|
|
|
pool_size,
|
|
|
|
|
pool_stride,
|
|
|
|
|
pool_padding=0,
|
|
|
|
|
pool_type='max',
|
|
|
|
|
global_pooling=False,
|
|
|
|
|
conv_stride=1,
|
|
|
|
|
conv_padding=0,
|
|
|
|
|
conv_dilation=1,
|
|
|
|
|
conv_groups=1,
|
|
|
|
|
act=None,
|
|
|
|
|
use_cudnn=False,
|
|
|
|
|
param_attr=None,
|
|
|
|
|
bias_attr=None):
|
|
|
|
|
super(SimpleImgConvPool, self).__init__()
|
|
|
|
|
|
|
|
|
|
# groups = 1
|
|
|
|
|
# dilation = [1, 1]
|
|
|
|
|
# pad = [0, 0]
|
|
|
|
|
# stride = [1, 1]
|
|
|
|
|
# input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
|
# assert np.mod(input_size[1], groups) == 0
|
|
|
|
|
# f_c = input_size[1] // groups
|
|
|
|
|
# filter_size = [6, f_c, 3, 3]
|
|
|
|
|
|
|
|
|
|
self._conv2d = Conv2D(
|
|
|
|
|
num_channels=num_channels,
|
|
|
|
|
num_filters=num_filters,
|
|
|
|
|
filter_size=filter_size,
|
|
|
|
|
stride=conv_stride,
|
|
|
|
|
padding=conv_padding,
|
|
|
|
|
dilation=conv_dilation,
|
|
|
|
|
groups=conv_groups,
|
|
|
|
|
param_attr=None,
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
use_cudnn=use_cudnn)
|
|
|
|
|
|
|
|
|
|
self._pool2d = Pool2D(
|
|
|
|
|
pool_size=pool_size,
|
|
|
|
|
pool_type=pool_type,
|
|
|
|
|
pool_stride=pool_stride,
|
|
|
|
|
pool_padding=pool_padding,
|
|
|
|
|
global_pooling=global_pooling,
|
|
|
|
|
use_cudnn=use_cudnn)
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
|
def new_program_scope():
|
|
|
|
|
prog = fluid.Program()
|
|
|
|
|
startup_prog = fluid.Program()
|
|
|
|
|
scope = fluid.core.Scope()
|
|
|
|
|
with fluid.scope_guard(scope):
|
|
|
|
|
with fluid.program_guard(prog, startup_prog):
|
|
|
|
|
yield
|
|
|
|
|
def forward(self, inputs):
|
|
|
|
|
x = self._conv2d(inputs)
|
|
|
|
|
x = self._pool2d(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MNIST(fluid.imperative.PyLayer):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(MNIST, self).__init__()
|
|
|
|
|
|
|
|
|
|
groups = 1
|
|
|
|
|
dilation = [1, 1]
|
|
|
|
|
pad = [0, 0]
|
|
|
|
|
stride = [1, 1]
|
|
|
|
|
input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
|
assert np.mod(input_size[1], groups) == 0
|
|
|
|
|
f_c = input_size[1] // groups
|
|
|
|
|
filter_size = [6, f_c, 3, 3]
|
|
|
|
|
def __init__(self, param_attr=None, bias_attr=None):
|
|
|
|
|
super(MNIST, self).__init__(param_attr=param_attr, bias_attr=bias_attr)
|
|
|
|
|
|
|
|
|
|
self._conv2d = Conv2D(
|
|
|
|
|
self._simple_img_conv_pool_1 = SimpleImgConvPool(
|
|
|
|
|
num_channels=3,
|
|
|
|
|
filter_size=5,
|
|
|
|
|
num_filters=20,
|
|
|
|
|
filter_size=3,
|
|
|
|
|
stride=stride,
|
|
|
|
|
padding=pad,
|
|
|
|
|
dilation=dilation,
|
|
|
|
|
groups=groups,
|
|
|
|
|
use_cudnn=False)
|
|
|
|
|
pool_size=2,
|
|
|
|
|
pool_stride=2,
|
|
|
|
|
act="relu")
|
|
|
|
|
|
|
|
|
|
self._simple_img_conv_pool_2 = SimpleImgConvPool(
|
|
|
|
|
num_channels=3,
|
|
|
|
|
filter_size=5,
|
|
|
|
|
num_filters=50,
|
|
|
|
|
pool_size=2,
|
|
|
|
|
pool_stride=2,
|
|
|
|
|
act="relu")
|
|
|
|
|
|
|
|
|
|
def forward(self, inputs):
|
|
|
|
|
x = self._conv2d(inputs)
|
|
|
|
|
x = self._simple_img_conv_pool_1(inputs)
|
|
|
|
|
x = self._simple_img_conv_pool_2(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestImperativeMnist(unittest.TestCase):
|
|
|
|
|
# def test_layer(self):
|
|
|
|
|
# with fluid.imperative.guard():
|
|
|
|
|
# cl = core.Layer()
|
|
|
|
|
# cl.forward([])
|
|
|
|
|
# l = fluid.imperative.PyLayer()
|
|
|
|
|
# l.forward([])
|
|
|
|
|
|
|
|
|
|
# def test_layer_in_out(self):
|
|
|
|
|
# np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
|
|
|
|
|
# with fluid.imperative.guard():
|
|
|
|
|
# l = MyLayer()
|
|
|
|
|
# x = l(np_inp)[0]
|
|
|
|
|
# self.assertIsNotNone(x)
|
|
|
|
|
# dy_out = x._numpy()
|
|
|
|
|
# x._backward()
|
|
|
|
|
# dy_grad = l._x_for_debug._gradient()
|
|
|
|
|
|
|
|
|
|
# with new_program_scope():
|
|
|
|
|
# inp = fluid.layers.data(
|
|
|
|
|
# name="inp", shape=[3], append_batch_size=False)
|
|
|
|
|
# l = MyLayer()
|
|
|
|
|
# x = l(inp)[0]
|
|
|
|
|
# param_grads = fluid.backward.append_backward(
|
|
|
|
|
# x, parameter_list=[l._x_for_debug.name])[0]
|
|
|
|
|
# exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
|
|
|
|
|
|
# static_out, static_grad = exe.run(
|
|
|
|
|
# feed={inp.name: np_inp},
|
|
|
|
|
# fetch_list=[x.name, param_grads[1].name])
|
|
|
|
|
|
|
|
|
|
# self.assertTrue(np.allclose(dy_out, static_out))
|
|
|
|
|
# self.assertTrue(np.allclose(dy_grad, static_grad))
|
|
|
|
|
|
|
|
|
|
def test_mnist_cpu_float32(self):
|
|
|
|
|
with fluid.imperative.guard():
|
|
|
|
|
mnist = MNIST()
|
|
|
|
|