register pass compatibility (#27357)
* pass compatibility * add compatibility registry * add unittests for different padding * add assert * drop errmsgrevert-27520-disable_pr
parent
7e6dfcf9b2
commit
fd7ab4e63c
@ -0,0 +1,228 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from inference_pass_test import InferencePassTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.core import PassVersionChecker
|
||||
|
||||
|
||||
class ConvAffineChannelFusePassExplicitPaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
groups=3,
|
||||
padding=[1, 1, 1, 1],
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
input_scale = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
input_bias = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
ac_out = fluid.layers.affine_channel(
|
||||
x=conv_out, scale=input_scale, bias=input_bias)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [ac_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('conv_affine_channel_fuse_pass'))
|
||||
|
||||
|
||||
class ConvAffineChannelFusePassValidPaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
groups=3,
|
||||
padding='VALID',
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
input_scale = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
input_bias = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
ac_out = fluid.layers.affine_channel(
|
||||
x=conv_out, scale=input_scale, bias=input_bias)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [ac_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('conv_affine_channel_fuse_pass'))
|
||||
|
||||
|
||||
class ConvAffineChannelFusePassSamePaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
groups=3,
|
||||
padding='SAME',
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
input_scale = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
input_bias = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
ac_out = fluid.layers.affine_channel(
|
||||
x=conv_out, scale=input_scale, bias=input_bias)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [ac_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('conv_affine_channel_fuse_pass'))
|
||||
|
||||
|
||||
class ConvEltwiseAddAffineChannelFusePassExplicitPaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
groups=3,
|
||||
padding=[1, 1, 1, 1],
|
||||
bias_attr=param_attr,
|
||||
act=None)
|
||||
input_scale = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
input_bias = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
ac_out = fluid.layers.affine_channel(
|
||||
x=conv_out, scale=input_scale, bias=input_bias)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [ac_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible(
|
||||
'conv_eltwiseadd_affine_channel_fuse_pass'))
|
||||
|
||||
|
||||
class ConvEltwiseAddAffineChannelFusePassValidPaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
groups=3,
|
||||
padding='VALID',
|
||||
bias_attr=param_attr,
|
||||
act=None)
|
||||
input_scale = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
input_bias = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
ac_out = fluid.layers.affine_channel(
|
||||
x=conv_out, scale=input_scale, bias=input_bias)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [ac_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible(
|
||||
'conv_eltwiseadd_affine_channel_fuse_pass'))
|
||||
|
||||
|
||||
class ConvEltwiseAddAffineChannelFusePassSamePaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
groups=3,
|
||||
padding='Same',
|
||||
bias_attr=param_attr,
|
||||
act=None)
|
||||
input_scale = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
input_bias = fluid.layers.create_parameter(
|
||||
shape=[3], dtype="float32")
|
||||
ac_out = fluid.layers.affine_channel(
|
||||
x=conv_out, scale=input_scale, bias=input_bias)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [ac_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible(
|
||||
'conv_eltwiseadd_affine_channel_fuse_pass'))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,177 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from inference_pass_test import InferencePassTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.core import PassVersionChecker
|
||||
|
||||
|
||||
class ConvBnFusePassExplicitPaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=6,
|
||||
filter_size=6,
|
||||
groups=3,
|
||||
padding=[1, 1, 1, 1],
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
bn_out = fluid.layers.batch_norm(conv_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [bn_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(PassVersionChecker.IsCompatible('conv_bn_fuse_pass'))
|
||||
|
||||
|
||||
class ConvBnFusePassValidPaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=6,
|
||||
filter_size=6,
|
||||
groups=3,
|
||||
padding='VALID',
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
bn_out = fluid.layers.batch_norm(conv_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [bn_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(PassVersionChecker.IsCompatible('conv_bn_fuse_pass'))
|
||||
|
||||
|
||||
class ConvBnFusePassSamePaddingTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=6,
|
||||
filter_size=6,
|
||||
groups=3,
|
||||
padding='SAME',
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
bn_out = fluid.layers.batch_norm(conv_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [bn_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(PassVersionChecker.IsCompatible('conv_bn_fuse_pass'))
|
||||
|
||||
|
||||
class ConvEltwiseAddBnFuseExplicitPaddingPass(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=6,
|
||||
filter_size=6,
|
||||
groups=3,
|
||||
padding=[1, 1, 1, 1],
|
||||
bias_attr=None,
|
||||
act=None)
|
||||
bn_out = fluid.layers.batch_norm(conv_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [bn_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('conv_eltwiseadd_bn_fuse_pass'))
|
||||
|
||||
|
||||
class ConvEltwiseAddBnFuseValidPaddingPass(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=6,
|
||||
filter_size=6,
|
||||
groups=3,
|
||||
padding='VALID',
|
||||
bias_attr=None,
|
||||
act=None)
|
||||
bn_out = fluid.layers.batch_norm(conv_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [bn_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('conv_eltwiseadd_bn_fuse_pass'))
|
||||
|
||||
|
||||
class ConvEltwiseAddBnFuseSamePaddingPass(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=6,
|
||||
filter_size=6,
|
||||
groups=3,
|
||||
padding='SAME',
|
||||
bias_attr=None,
|
||||
act=None)
|
||||
bn_out = fluid.layers.batch_norm(conv_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [bn_out]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('conv_eltwiseadd_bn_fuse_pass'))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,94 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from inference_pass_test import InferencePassTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.core import PassVersionChecker
|
||||
|
||||
|
||||
class RepeatedFcReluFusePass3Test(InferencePassTest):
|
||||
def setUp(self):
|
||||
fc_num = 3
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
bias_attr=param_attr,
|
||||
act=None)
|
||||
fc_outs = []
|
||||
fc_outs.append(
|
||||
fluid.layers.fc(input=[conv_out], act="relu", size=1000))
|
||||
for i in range(1, fc_num):
|
||||
fc_outs.append(
|
||||
fluid.layers.fc(
|
||||
input=[fc_outs[i - 1]], act="relu", size=1000))
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [fc_outs[fc_num - 1]]
|
||||
|
||||
def test_check_output(self):
|
||||
use_gpu = False
|
||||
self.check_output_with_option(use_gpu)
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('repeated_fc_relu_fuse_pass'))
|
||||
|
||||
|
||||
class RepeatedFcReluFusePass9Test(InferencePassTest):
|
||||
def setUp(self):
|
||||
fc_num = 9
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 64, 64], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.conv2d(
|
||||
input=data,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
bias_attr=param_attr,
|
||||
act=None)
|
||||
fc_outs = []
|
||||
fc_outs.append(
|
||||
fluid.layers.fc(input=[conv_out], act="relu", size=1000))
|
||||
for i in range(1, fc_num):
|
||||
fc_outs.append(
|
||||
fluid.layers.fc(
|
||||
input=[fc_outs[i - 1]], act="relu", size=1000))
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [fc_outs[fc_num - 1]]
|
||||
|
||||
def test_check_output(self):
|
||||
use_gpu = False
|
||||
self.check_output_with_option(use_gpu)
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('repeated_fc_relu_fuse_pass'))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,51 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from inference_pass_test import InferencePassTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.core import PassVersionChecker
|
||||
from paddle.fluid.core import AnalysisConfig
|
||||
|
||||
|
||||
class ShuffleChannelFuseTRTPassTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 6, 64, 64], dtype="float32")
|
||||
reshape1 = fluid.layers.reshape(x=data, shape=[-1, 2, 3, 64, 64])
|
||||
trans = fluid.layers.transpose(x=reshape1, perm=[0, 2, 1, 3, 4])
|
||||
reshape2 = fluid.layers.reshape(x=trans, shape=[-1, 6, 64, 64])
|
||||
out = fluid.layers.batch_norm(reshape2, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 6, 64, 64]).astype("float32"),
|
||||
}
|
||||
self.enable_trt = True
|
||||
self.trt_parameters = ShuffleChannelFuseTRTPassTest.TensorRTParam(
|
||||
1 << 30, 32, 1, AnalysisConfig.Precision.Float32, False, False)
|
||||
self.fetch_list = [out]
|
||||
|
||||
def test_check_output(self):
|
||||
|
||||
self.check_output()
|
||||
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('shuffle_channel_detect_pass'))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue