test=develop

revert-13637-optimize-opyreader
sneaxiy 6 years ago
commit fde9e0c27d

@ -62,8 +62,26 @@ if(NOT CMAKE_CROSSCOMPILING)
endif() endif()
if(WIN32) if(WIN32)
# windows stupid compile option for all targets. # windows header option for all targets.
add_definitions(-D_XKEYCHECK_H) add_definitions(-D_XKEYCHECK_H)
# Use symbols instead of absolute path, reduce the cmake link command length.
SET(CMAKE_C_USE_RESPONSE_FILE_FOR_LIBRARIES 1)
SET(CMAKE_CXX_USE_RESPONSE_FILE_FOR_LIBRARIES 1)
SET(CMAKE_C_USE_RESPONSE_FILE_FOR_OBJECTS 1)
SET(CMAKE_CXX_USE_RESPONSE_FILE_FOR_OBJECTS 1)
SET(CMAKE_C_USE_RESPONSE_FILE_FOR_INCLUDES 1)
SET(CMAKE_CXX_USE_RESPONSE_FILE_FOR_INCLUDES 1)
SET(CMAKE_C_RESPONSE_FILE_LINK_FLAG "@")
SET(CMAKE_CXX_RESPONSE_FILE_LINK_FLAG "@")
# Specify the program to use when building static libraries
SET(CMAKE_C_CREATE_STATIC_LIBRARY "<CMAKE_AR> lib <TARGET> <LINK_FLAGS> <OBJECTS>")
SET(CMAKE_CXX_CREATE_STATIC_LIBRARY "<CMAKE_AR> lib <TARGET> <LINK_FLAGS> <OBJECTS>")
# set defination for the dll export
if (NOT MSVC)
message(FATAL "Windows build only support msvc. Which was binded by the nvcc compiler of NVIDIA.")
endif(NOT MSVC)
endif(WIN32) endif(WIN32)
if(NOT WITH_GOLANG) if(NOT WITH_GOLANG)

@ -27,7 +27,6 @@ endfunction()
CheckCompilerCXX11Flag() CheckCompilerCXX11Flag()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
# safe_set_flag # safe_set_flag
# #
# Set a compile flag only if compiler is support # Set a compile flag only if compiler is support
@ -71,6 +70,20 @@ macro(safe_set_nvflag flag_name)
endif() endif()
endmacro() endmacro()
macro(safe_set_static_flag) # set c_flags and cxx_flags to static or shared
if (BUILD_SHARED_LIBS)
return() # if build shared libs, the flags keep same with '/MD'
endif(BUILD_SHARED_LIBS)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO
CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
endmacro()
CHECK_CXX_SYMBOL_EXISTS(UINT64_MAX "stdint.h" UINT64_MAX_EXISTS) CHECK_CXX_SYMBOL_EXISTS(UINT64_MAX "stdint.h" UINT64_MAX_EXISTS)
if(NOT UINT64_MAX_EXISTS) if(NOT UINT64_MAX_EXISTS)
@ -97,9 +110,13 @@ SET(CMAKE_EXTRA_INCLUDE_FILES "")
# Common flags. the compiler flag used for C/C++ sources whenever release or debug # Common flags. the compiler flag used for C/C++ sources whenever release or debug
# Do not care if this flag is support for gcc. # Do not care if this flag is support for gcc.
# https://github.com/PaddlePaddle/Paddle/issues/12773
if (NOT WIN32)
set(COMMON_FLAGS set(COMMON_FLAGS
-fPIC -fPIC
-fno-omit-frame-pointer -fno-omit-frame-pointer
-Werror
-Wall -Wall
-Wextra -Wextra
-Wnon-virtual-dtor -Wnon-virtual-dtor
@ -114,11 +131,6 @@ set(COMMON_FLAGS
-Wno-error=terminate # Warning in PADDLE_ENFORCE -Wno-error=terminate # Warning in PADDLE_ENFORCE
) )
# https://github.com/PaddlePaddle/Paddle/issues/12773
if (NOT WIN32)
list(APPEND COMMON_FLAGS -Werror)
endif()
set(GPU_COMMON_FLAGS set(GPU_COMMON_FLAGS
-fPIC -fPIC
-fno-omit-frame-pointer -fno-omit-frame-pointer
@ -133,30 +145,53 @@ set(GPU_COMMON_FLAGS
-Wno-error=array-bounds # Warnings in Eigen::array -Wno-error=array-bounds # Warnings in Eigen::array
) )
else(NOT WIN32)
set(COMMON_FLAGS
"/w") #disable all warnings.
set(GPU_COMMON_FLAGS
"/w") #disable all warnings
endif(NOT WIN32)
if (APPLE) if (APPLE)
if(NOT CMAKE_CROSSCOMPILING) if(NOT CMAKE_CROSSCOMPILING)
# On Mac OS X build fat binaries with x86_64 architectures by default. # On Mac OS X build fat binaries with x86_64 architectures by default.
set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE) set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE)
endif() endif()
else() endif(APPLE)
if(LINUX)
set(GPU_COMMON_FLAGS set(GPU_COMMON_FLAGS
-Wall -Wall
-Wextra -Wextra
-Werror -Werror
${GPU_COMMON_FLAGS}) ${GPU_COMMON_FLAGS})
endif() endif(LINUX)
if(UNIX AND NOT APPLE) if(UNIX AND NOT APPLE)
# except apple from nix*Os family # except apple from nix*Os family
set(LINUX TRUE) set(LINUX TRUE)
endif(UNIX AND NOT APPLE) endif(UNIX AND NOT APPLE)
foreach(flag ${COMMON_FLAGS}) foreach(flag ${COMMON_FLAGS})
safe_set_cflag(CMAKE_C_FLAGS ${flag}) safe_set_cflag(CMAKE_C_FLAGS ${flag})
safe_set_cxxflag(CMAKE_CXX_FLAGS ${flag}) safe_set_cxxflag(CMAKE_CXX_FLAGS ${flag})
endforeach() endforeach()
foreach(flag ${GPU_COMMON_FLAGS}) foreach(flag ${GPU_COMMON_FLAGS})
safe_set_nvflag(${flag}) safe_set_nvflag(${flag})
endforeach() endforeach()
if(WIN32)
# windows build turn off warnings.
safe_set_static_flag()
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO
CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/W3")
string(REGEX REPLACE "/W3" "/w" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/W3")
endforeach(flag_var)
endif(WIN32)

@ -102,8 +102,8 @@ class Float16Transpiler:
continue continue
for input_arg in current_op.input_arg_names: for input_arg in current_op.input_arg_names:
if input_arg in self.input_map: if input_arg in self.input_map:
current_op.rename_input(input_arg, current_op._rename_input(input_arg,
self.input_map[input_arg]) self.input_map[input_arg])
def _remove_unused_var(self): def _remove_unused_var(self):
''' '''
@ -187,7 +187,7 @@ class Float16Transpiler:
shape=var.shape, shape=var.shape,
persistable=var.persistable) persistable=var.persistable)
find_op(var) find_op(var)
var.op.rename_output(var_name, tmp_var_name) var.op._rename_output(var_name, tmp_var_name)
self.block._insert_op( self.block._insert_op(
i, i,
type="cast", type="cast",

@ -6,26 +6,9 @@ paddle.fluid.Program.global_block ArgSpec(args=['self'], varargs=None, keywords=
paddle.fluid.Program.list_vars ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.Program.list_vars ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None) paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.Operator.__init__ ArgSpec(args=['self', 'block', 'desc', 'type', 'inputs', 'outputs', 'attrs'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.Operator.all_attrs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.attr_type ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr_id ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.blocks_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.blocks_attr_ids ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_kernel ArgSpec(args=['self', 'op_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.input ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.output ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.rename_input ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.rename_output ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.set_attr ArgSpec(args=['self', 'name', 'val'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.to_string ArgSpec(args=['self', 'throw_on_error'], varargs=None, keywords=None, defaults=None)
paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.get_var ArgSpec(args=['name', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.name_scope ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.name_scope ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None) paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
@ -41,7 +24,7 @@ paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id',
paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0)) paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
paddle.fluid.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspilerConfig.__init__ paddle.fluid.DistributeTranspilerConfig.__init__
paddle.fluid.ParallelExecutor.__init__ ArgSpec(args=['self', 'use_cuda', 'loss_name', 'main_program', 'share_vars_from', 'exec_strategy', 'build_strategy', 'num_trainers', 'trainer_id', 'scope'], varargs=None, keywords='kwargs', defaults=(None, None, None, None, None, 1, 0, None)) paddle.fluid.ParallelExecutor.__init__ ArgSpec(args=['self', 'use_cuda', 'loss_name', 'main_program', 'share_vars_from', 'exec_strategy', 'build_strategy', 'num_trainers', 'trainer_id', 'scope'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 1, 0, None))
paddle.fluid.ParallelExecutor.run ArgSpec(args=['self', 'fetch_list', 'feed', 'feed_dict', 'return_numpy'], varargs=None, keywords=None, defaults=(None, None, True)) paddle.fluid.ParallelExecutor.run ArgSpec(args=['self', 'fetch_list', 'feed', 'feed_dict', 'return_numpy'], varargs=None, keywords=None, defaults=(None, None, True))
paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ExecutionStrategy) -> None paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ExecutionStrategy) -> None
paddle.fluid.BuildStrategy.GradientScaleStrategy.__init__ __init__(self: paddle.fluid.core.GradientScaleStrategy, arg0: int) -> None paddle.fluid.BuildStrategy.GradientScaleStrategy.__init__ __init__(self: paddle.fluid.core.GradientScaleStrategy, arg0: int) -> None
@ -162,14 +145,14 @@ paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, key
paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None)) paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.expand ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.expand ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)) paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'out', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None, None))
paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)) paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
@ -374,7 +357,7 @@ paddle.fluid.CPUPlace.__init__ __init__(self: paddle.fluid.core.CPUPlace) -> Non
paddle.fluid.CUDAPlace.__init__ __init__(self: paddle.fluid.core.CUDAPlace, arg0: int) -> None paddle.fluid.CUDAPlace.__init__ __init__(self: paddle.fluid.core.CUDAPlace, arg0: int) -> None
paddle.fluid.CUDAPinnedPlace.__init__ __init__(self: paddle.fluid.core.CUDAPinnedPlace) -> None paddle.fluid.CUDAPinnedPlace.__init__ __init__(self: paddle.fluid.core.CUDAPinnedPlace) -> None
paddle.fluid.ParamAttr.__init__ ArgSpec(args=['self', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, 1.0, None, True, None, False)) paddle.fluid.ParamAttr.__init__ ArgSpec(args=['self', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, 1.0, None, True, None, False))
paddle.fluid.WeightNormParamAttr.__init__ ArgSpec(args=['self', 'dim'], varargs=None, keywords='kwargs', defaults=(None,)) paddle.fluid.WeightNormParamAttr.__init__ ArgSpec(args=['self', 'dim', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, None, 1.0, None, True, None, False))
paddle.fluid.DataFeeder.__init__ ArgSpec(args=['self', 'feed_list', 'place', 'program'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.DataFeeder.__init__ ArgSpec(args=['self', 'feed_list', 'place', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DataFeeder.decorate_reader ArgSpec(args=['self', 'reader', 'multi_devices', 'num_places', 'drop_last'], varargs=None, keywords=None, defaults=(None, True)) paddle.fluid.DataFeeder.decorate_reader ArgSpec(args=['self', 'reader', 'multi_devices', 'num_places', 'drop_last'], varargs=None, keywords=None, defaults=(None, True))
paddle.fluid.DataFeeder.feed ArgSpec(args=['self', 'iterable'], varargs=None, keywords=None, defaults=None) paddle.fluid.DataFeeder.feed ArgSpec(args=['self', 'iterable'], varargs=None, keywords=None, defaults=None)

@ -13,3 +13,5 @@ if(WITH_INFERENCE)
# NOTE: please add subdirectory inference at last. # NOTE: please add subdirectory inference at last.
add_subdirectory(inference) add_subdirectory(inference)
endif() endif()
add_subdirectory(train)

@ -26,8 +26,6 @@ std::unique_ptr<ir::Graph> ConvReLUFusePass::ApplyImpl(
PADDLE_ENFORCE(graph.get()); PADDLE_ENFORCE(graph.get());
FusePassBase::Init("conv_relu_mkldnn_fuse", graph.get()); FusePassBase::Init("conv_relu_mkldnn_fuse", graph.get());
std::unordered_set<Node*> nodes2delete;
GraphPatternDetector gpd; GraphPatternDetector gpd;
auto* conv_input = gpd.mutable_pattern() auto* conv_input = gpd.mutable_pattern()
->NewNode("conv_relu_mkldnn_fuse/conv_input") ->NewNode("conv_relu_mkldnn_fuse/conv_input")
@ -42,36 +40,20 @@ std::unique_ptr<ir::Graph> ConvReLUFusePass::ApplyImpl(
Graph* g) { Graph* g) {
VLOG(4) << "handle ConvReLU fuse"; VLOG(4) << "handle ConvReLU fuse";
GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight,
conv_relu_pattern); // Filter conv_relu_pattern); // Filter
GET_IR_NODE_FROM_SUBGRAPH(conv_bias, conv_bias, conv_relu_pattern); // Bias GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, conv_relu_pattern); // tmp
GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, conv_relu_pattern); // tmp
GET_IR_NODE_FROM_SUBGRAPH(conv, conv, conv_relu_pattern); // CONV op GET_IR_NODE_FROM_SUBGRAPH(conv, conv, conv_relu_pattern); // CONV op
GET_IR_NODE_FROM_SUBGRAPH(relu_out, relu_out, conv_relu_pattern); // Out GET_IR_NODE_FROM_SUBGRAPH(relu_out, relu_out, conv_relu_pattern); // Out
GET_IR_NODE_FROM_SUBGRAPH(relu, relu, conv_relu_pattern); // ReLU op GET_IR_NODE_FROM_SUBGRAPH(relu, relu, conv_relu_pattern); // ReLU op
// Create an ConvReLU Node. // Transform Conv node into ConvReLU node.
OpDesc desc; OpDesc* desc = conv->Op();
std::string conv_relu_i_in = subgraph.at(conv_input)->Name(); desc->SetOutput("Output", std::vector<std::string>({relu_out->Name()}));
std::string conv_relu_w_in = conv_weight->Name(); desc->SetAttr("fuse_relu", true);
std::string conv_relu_b_in = conv_bias->Name(); GraphSafeRemoveNodes(graph.get(), {relu, conv_out});
std::string conv_relu_out = relu_out->Name();
desc.SetInput("Input", std::vector<std::string>({conv_relu_i_in}));
desc.SetInput("Filter", std::vector<std::string>({conv_relu_w_in}));
desc.SetInput("Bias", std::vector<std::string>({conv_relu_b_in}));
desc.SetOutput("Output", std::vector<std::string>({conv_relu_out}));
desc.SetType("conv2d");
for (auto& attr : conv->Op()->GetAttrMap()) {
desc.SetAttr(attr.first, attr.second);
}
desc.SetAttr("fuse_relu", true);
auto conv_relu_node = g->CreateOpNode(&desc); // OpDesc will be copied.
GraphSafeRemoveNodes(graph.get(), {conv, relu, conv_out});
PADDLE_ENFORCE(subgraph.count(conv_input)); PADDLE_ENFORCE(subgraph.count(conv_input));
IR_NODE_LINK_TO(subgraph.at(conv_input), conv_relu_node); IR_NODE_LINK_TO(conv, relu_out);
IR_NODE_LINK_TO(conv_weight, conv_relu_node);
IR_NODE_LINK_TO(conv_bias, conv_relu_node);
IR_NODE_LINK_TO(conv_relu_node, relu_out);
found_conv_relu_count++; found_conv_relu_count++;
}; };

@ -85,16 +85,13 @@ TEST(ConvReLUFusePass, basic) {
for (auto* node : graph->Nodes()) { for (auto* node : graph->Nodes()) {
if (node->IsOp() && node->Op()->Type() == "conv2d") { if (node->IsOp() && node->Op()->Type() == "conv2d") {
if (node->Op()->HasAttr("use_mkldnn")) { auto* op = node->Op();
bool use_mkldnn = boost::get<bool>(node->Op()->GetAttr("use_mkldnn")); ASSERT_TRUE(op->HasAttr("use_mkldnn"));
if (use_mkldnn) { EXPECT_TRUE(boost::get<bool>(op->GetAttr("use_mkldnn")));
if (node->Op()->HasAttr("fuse_relu")) { ASSERT_TRUE(op->HasAttr("fuse_relu"));
bool fuse_relu = boost::get<bool>(node->Op()->GetAttr("fuse_relu")); bool fuse_relu = boost::get<bool>(op->GetAttr("fuse_relu"));
if (fuse_relu) { if (fuse_relu) {
++conv_relu_count; ++conv_relu_count;
}
}
}
} }
} }
} }

@ -638,11 +638,6 @@ PDNode *patterns::ConvReLU::operator()(
->AsInput() ->AsInput()
->assert_is_persistable_var() ->assert_is_persistable_var()
->assert_is_op_input("conv2d", "Filter"); ->assert_is_op_input("conv2d", "Filter");
// Bias
auto *conv_bias_var = pattern->NewNode(conv_bias_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("conv2d", "Bias");
// intermediate variable, will be removed in the IR after fuse. // intermediate variable, will be removed in the IR after fuse.
auto *conv_out_var = pattern->NewNode(conv_out_repr()) auto *conv_out_var = pattern->NewNode(conv_out_repr())
->AsIntermediate() ->AsIntermediate()
@ -653,8 +648,7 @@ PDNode *patterns::ConvReLU::operator()(
->AsOutput() ->AsOutput()
->assert_is_op_output("relu"); ->assert_is_op_output("relu");
conv_op->LinksFrom({conv_input, conv_weight_var, conv_bias_var}) conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
.LinksTo({conv_out_var});
relu_op->LinksFrom({conv_out_var}).LinksTo({relu_out_var}); relu_op->LinksFrom({conv_out_var}).LinksTo({relu_out_var});
return relu_out_var; return relu_out_var;
} }

@ -379,7 +379,7 @@ struct PatternBase {
// op: conv + relu // op: conv + relu
// named nodes: // named nodes:
// conv_input, conv_weight, // conv_input, conv_weight,
// conv_bias, conv_out, conv, // conv_out, conv,
// relu_out, relu // relu_out, relu
struct ConvReLU : public PatternBase { struct ConvReLU : public PatternBase {
ConvReLU(PDPattern* pattern, const std::string& name_scope) ConvReLU(PDPattern* pattern, const std::string& name_scope)
@ -392,7 +392,6 @@ struct ConvReLU : public PatternBase {
PATTERN_DECL_NODE(relu); PATTERN_DECL_NODE(relu);
// declare variable node's name // declare variable node's name
PATTERN_DECL_NODE(conv_weight); PATTERN_DECL_NODE(conv_weight);
PATTERN_DECL_NODE(conv_bias);
PATTERN_DECL_NODE(conv_out); PATTERN_DECL_NODE(conv_out);
PATTERN_DECL_NODE(relu_out); PATTERN_DECL_NODE(relu_out);
}; };

@ -14,6 +14,8 @@
#include "paddle/fluid/framework/ir/graph_traits.h" #include "paddle/fluid/framework/ir/graph_traits.h"
#include <vector>
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {

@ -38,27 +38,31 @@ struct OpInfo {
OpAttrChecker* checker_{nullptr}; OpAttrChecker* checker_{nullptr};
InferVarTypeFN infer_var_type_; InferVarTypeFN infer_var_type_;
InferShapeFN infer_shape_; InferShapeFN infer_shape_;
std::string op_type_;
bool HasOpProtoAndChecker() const { bool HasOpProtoAndChecker() const {
return proto_ != nullptr && checker_ != nullptr; return proto_ != nullptr && checker_ != nullptr;
} }
const proto::OpProto& Proto() const { const proto::OpProto& Proto() const {
PADDLE_ENFORCE_NOT_NULL(proto_, "Operator Proto has not been registered"); PADDLE_ENFORCE_NOT_NULL(proto_, "Operator %s Proto has not been registered",
op_type_);
PADDLE_ENFORCE(proto_->IsInitialized(), PADDLE_ENFORCE(proto_->IsInitialized(),
"Operator Proto must be initialized in op info"); "Operator %s Proto must be initialized in op info",
op_type_);
return *proto_; return *proto_;
} }
const OpCreator& Creator() const { const OpCreator& Creator() const {
PADDLE_ENFORCE_NOT_NULL(creator_, PADDLE_ENFORCE_NOT_NULL(
"Operator Creator has not been registered"); creator_, "Operator %s Creator has not been registered", op_type_);
return creator_; return creator_;
} }
const GradOpMakerFN& GradOpMaker() const { const GradOpMakerFN& GradOpMaker() const {
PADDLE_ENFORCE_NOT_NULL(grad_op_maker_, PADDLE_ENFORCE_NOT_NULL(grad_op_maker_,
"Operator GradOpMaker has not been registered."); "Operator %s GradOpMaker has not been registered.",
op_type_);
return grad_op_maker_; return grad_op_maker_;
} }
@ -73,8 +77,9 @@ class OpInfoMap {
return map_.find(op_type) != map_.end(); return map_.find(op_type) != map_.end();
} }
void Insert(const std::string& type, const OpInfo& info) { void Insert(const std::string& type, OpInfo info) {
PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type); PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type);
info.op_type_ = type;
map_.insert({type, info}); map_.insert({type, info});
} }

@ -132,7 +132,9 @@ void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto,
AddAttr<std::string>(OpNamescopeAttrName(), "Operator name with namesope.") AddAttr<std::string>(OpNamescopeAttrName(), "Operator name with namesope.")
.SetDefault(""); .SetDefault("");
AddAttr<std::vector<std::string>>(OpCreationCallstackAttrName(),
"Callstack for Op Creatation.")
.SetDefault({});
Validate(); Validate();
} }

@ -46,6 +46,7 @@ class OpProtoAndCheckerMaker {
static const char *OpRoleAttrName() { return "op_role"; } static const char *OpRoleAttrName() { return "op_role"; }
static const char *OpRoleVarAttrName() { return "op_role_var"; } static const char *OpRoleVarAttrName() { return "op_role_var"; }
static const char *OpNamescopeAttrName() { return "op_namescope"; } static const char *OpNamescopeAttrName() { return "op_namescope"; }
static const char *OpCreationCallstackAttrName() { return "op_callstack"; }
void operator()(proto::OpProto *proto, OpAttrChecker *attr_checker); void operator()(proto::OpProto *proto, OpAttrChecker *attr_checker);

@ -14,15 +14,17 @@ limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES #define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL #define GOOGLE_GLOG_DLL_DECL
#include "paddle/fluid/framework/operator.h"
#include <gflags/gflags.h> #include <gflags/gflags.h>
#include <glog/logging.h> #include <glog/logging.h>
#include <algorithm> #include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_transform.h" #include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/shape_inference.h" #include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h" #include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler.h"
@ -140,19 +142,48 @@ static LoD GetLoD(const Scope& scope, const std::string& name) {
} }
void OperatorBase::Run(const Scope& scope, const platform::Place& place) { void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
VLOG(4) << place << " " << DebugStringEx(&scope); try {
if (platform::is_gpu_place(place)) { if (VLOG_IS_ON(4)) {
VLOG(4) << place << " " << DebugStringEx(&scope);
}
if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA #ifndef PADDLE_WITH_CUDA
PADDLE_THROW("Cannot run operator on place %s", place); PADDLE_THROW("Cannot run operator on place %s", place);
#else #else
auto dev_id = boost::get<platform::CUDAPlace>(place).device; auto dev_id = boost::get<platform::CUDAPlace>(place).device;
platform::SetDeviceId(dev_id); platform::SetDeviceId(dev_id);
#endif #endif
}
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
platform::RecordEvent record_event(Type(), pool.Get(place));
RunImpl(scope, place);
if (VLOG_IS_ON(3)) {
VLOG(3) << place << " " << DebugStringEx(&scope);
}
} catch (platform::EnforceNotMet exception) {
if (Attrs().count("sub_block") != 0) {
throw exception;
}
auto& callstack = Attr<std::vector<std::string>>(
OpProtoAndCheckerMaker::OpCreationCallstackAttrName());
if (callstack.empty()) {
throw exception;
}
std::ostringstream sout;
sout << "Invoke operator " << Type() << " error.\n";
sout << "Python Callstacks: \n";
for (auto& line : callstack) {
sout << line;
}
sout << "C++ Callstacks: \n";
sout << exception.err_str_;
exception.err_str_ = sout.str();
throw exception;
} catch (...) {
std::rethrow_exception(std::current_exception());
} }
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
platform::RecordEvent record_event(Type(), pool.Get(place));
RunImpl(scope, place);
VLOG(3) << place << " " << DebugStringEx(&scope);
} }
bool OperatorBase::HasInputs(const std::string& name) const { bool OperatorBase::HasInputs(const std::string& name) const {
@ -180,7 +211,7 @@ const std::vector<std::string>& OperatorBase::Inputs(
} }
bool OperatorBase::HasOutputs(const std::string& name) const { bool OperatorBase::HasOutputs(const std::string& name) const {
if (outputs_.find(name) != outputs_.end()) { if (outputs_.end() != outputs_.find(name)) {
return true; return true;
} else { } else {
return false; return false;

@ -76,10 +76,10 @@ bool AnalysisPredictor::Init(
} }
OptimizeInferenceProgram(); OptimizeInferenceProgram();
ctx_ = executor_->Prepare(*inference_program_, 0);
if (config_._use_mkldnn) { if (config_._use_mkldnn) {
executor_->EnableMKLDNN(*inference_program_); executor_->EnableMKLDNN(*inference_program_);
} }
ctx_ = executor_->Prepare(*inference_program_, 0);
VLOG(5) << "to create variables"; VLOG(5) << "to create variables";
PADDLE_ENFORCE(scope_.get()); PADDLE_ENFORCE(scope_.get());

@ -22,6 +22,7 @@ limitations under the License. */
#include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/inference/api/api_impl.h" #include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/timer.h" #include "paddle/fluid/inference/api/timer.h"
#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler.h"
@ -215,57 +216,20 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
template <typename T> template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch, void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
PaddleTensor *output) { PaddleTensor *output) {
std::vector<int> shape; // set shape.
auto dims_i = fetch.dims(); auto shape = framework::vectorize(fetch.dims());
auto lod = fetch.lod(); output->shape.assign(shape.begin(), shape.end());
const T *output_ptr = fetch.data<T>(); // set data.
auto num = fetch.numel(); const T *data = fetch.data<T>();
std::vector<T> data; int num_elems = inference::VecReduceToInt(shape);
if (0 == lod.size()) { output->data.Resize(num_elems * sizeof(T));
std::copy(output_ptr, output_ptr + num, std::back_inserter(data)); // The fetched tensor output by fetch op, should always in CPU memory, so just
for (int j = 0; j < dims_i.size(); ++j) { // copy.
shape.push_back(dims_i[j]); memcpy(output->data.data(), data, num_elems * sizeof(T));
} // set lod
} else { output->lod.clear();
// for batch detection for (auto &level : fetch.lod()) {
// image[0] -> output[0] shape {145, 6} output->lod.emplace_back(level.begin(), level.end());
// image[1] -> output[1] shape {176, 6}
// then,
// the batch output shape {321, 6}
// the lod {{0, 145, 321}}
// so we should append output[0] to {176, 6}
size_t max_dim = 0;
for (size_t j = 1; j < lod[0].size(); j++) {
max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
}
size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
if (max_dim > 0) {
data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
}
for (size_t j = 1; j < lod[0].size(); j++) {
size_t start = lod[0][j - 1] * common_dim;
size_t end = lod[0][j] * common_dim;
if (end > start) {
std::copy(output_ptr + start, output_ptr + end,
data.begin() + (j - 1) * max_dim * common_dim);
}
}
shape.push_back(lod[0].size() - 1);
shape.push_back(max_dim);
for (int j = 1; j < dims_i.size(); ++j) {
shape.push_back(dims_i[j]);
}
}
output->shape = shape;
auto &buffer = output->data;
if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) {
buffer.Resize(sizeof(T) * data.size());
}
std::memcpy(buffer.data(), data.data(), sizeof(T) * data.size());
// copy LoD
for (const auto &level : fetch.lod()) {
output->lod.emplace_back(level);
} }
} }

@ -74,13 +74,17 @@ template <>
std::string to_string<std::vector<std::vector<float>>>( std::string to_string<std::vector<std::vector<float>>>(
const std::vector<std::vector<std::vector<float>>> &vec); const std::vector<std::vector<std::vector<float>>> &vec);
template <typename T>
int VecReduceToInt(const std::vector<T> &v) {
return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; });
}
template <typename T> template <typename T>
static void TensorAssignData(PaddleTensor *tensor, static void TensorAssignData(PaddleTensor *tensor,
const std::vector<std::vector<T>> &data) { const std::vector<std::vector<T>> &data) {
// Assign buffer // Assign buffer
int dim = std::accumulate(tensor->shape.begin(), tensor->shape.end(), 1, int num_elems = VecReduceToInt(tensor->shape);
[](int a, int b) { return a * b; }); tensor->data.Resize(sizeof(T) * num_elems);
tensor->data.Resize(sizeof(T) * dim);
int c = 0; int c = 0;
for (const auto &f : data) { for (const auto &f : data) {
for (T v : f) { for (T v : f) {
@ -89,7 +93,7 @@ static void TensorAssignData(PaddleTensor *tensor,
} }
} }
std::string DescribeTensor(const PaddleTensor &tensor) { static std::string DescribeTensor(const PaddleTensor &tensor) {
std::stringstream os; std::stringstream os;
os << "Tensor [" << tensor.name << "]\n"; os << "Tensor [" << tensor.name << "]\n";
os << " - type: "; os << " - type: ";
@ -113,8 +117,7 @@ std::string DescribeTensor(const PaddleTensor &tensor) {
os << "\n"; os << "\n";
os << " - data: "; os << " - data: ";
int dim = std::accumulate(tensor.shape.begin(), tensor.shape.end(), 1, int dim = VecReduceToInt(tensor.shape);
[](int a, int b) { return a * b; });
for (int i = 0; i < dim; i++) { for (int i = 0; i < dim; i++) {
os << static_cast<float *>(tensor.data.data())[i] << " "; os << static_cast<float *>(tensor.data.data())[i] << " ";
} }
@ -122,8 +125,8 @@ std::string DescribeTensor(const PaddleTensor &tensor) {
return os.str(); return os.str();
} }
void PrintTime(int batch_size, int repeat, int num_threads, int tid, static void PrintTime(int batch_size, int repeat, int num_threads, int tid,
double latency, int epoch = 1) { double latency, int epoch = 1) {
LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat
<< ", threads: " << num_threads << ", thread id: " << tid << ", threads: " << num_threads << ", thread id: " << tid
<< ", latency: " << latency << "ms ======"; << ", latency: " << latency << "ms ======";

@ -58,6 +58,11 @@ set(TEXT_CLASSIFICATION_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/text_classifi
download_model_and_data(${TEXT_CLASSIFICATION_INSTALL_DIR} "text-classification-Senta.tar.gz" "text_classification_data.txt.tar.gz") download_model_and_data(${TEXT_CLASSIFICATION_INSTALL_DIR} "text-classification-Senta.tar.gz" "text_classification_data.txt.tar.gz")
inference_analysis_api_test(test_analyzer_text_classification ${TEXT_CLASSIFICATION_INSTALL_DIR} analyzer_text_classification_tester.cc) inference_analysis_api_test(test_analyzer_text_classification ${TEXT_CLASSIFICATION_INSTALL_DIR} analyzer_text_classification_tester.cc)
# seq_conv1
set(SEQ_CONV1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/seq_conv1")
download_model_and_data(${SEQ_CONV1_INSTALL_DIR} "seq_conv1_model.tar.gz" "seq_conv1_data.txt.tar.gz")
inference_analysis_api_test(test_analyzer_seq_conv1 ${SEQ_CONV1_INSTALL_DIR} analyzer_seq_conv1_tester.cc)
# ocr # ocr
set(OCR_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/ocr") set(OCR_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/ocr")
if (NOT EXISTS ${OCR_INSTALL_DIR}) if (NOT EXISTS ${OCR_INSTALL_DIR})

@ -0,0 +1,199 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
struct DataRecord {
std::vector<std::vector<int64_t>> title1_all, title2_all, title3_all, l1_all;
std::vector<std::vector<int64_t>> title1, title2, title3, l1;
std::vector<size_t> title1_lod, title2_lod, title3_lod, l1_lod;
size_t batch_iter{0};
size_t batch_size{1};
size_t num_samples; // total number of samples
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
DataRecord NextBatch() {
DataRecord data;
size_t batch_end = batch_iter + batch_size;
// NOTE skip the final batch, if no enough data is provided.
if (batch_end <= title1_all.size()) {
data.title1_all.assign(title1_all.begin() + batch_iter,
title1_all.begin() + batch_end);
data.title2_all.assign(title2_all.begin() + batch_iter,
title2_all.begin() + batch_end);
data.title3_all.assign(title3_all.begin() + batch_iter,
title3_all.begin() + batch_end);
data.l1_all.assign(l1_all.begin() + batch_iter,
l1_all.begin() + batch_end);
// Prepare LoDs
data.title1_lod.push_back(0);
data.title2_lod.push_back(0);
data.title3_lod.push_back(0);
data.l1_lod.push_back(0);
CHECK(!data.title1_all.empty());
CHECK(!data.title2_all.empty());
CHECK(!data.title3_all.empty());
CHECK(!data.l1_all.empty());
CHECK_EQ(data.title1_all.size(), data.title2_all.size());
CHECK_EQ(data.title1_all.size(), data.title3_all.size());
CHECK_EQ(data.title1_all.size(), data.l1_all.size());
for (size_t j = 0; j < data.title1_all.size(); j++) {
data.title1.push_back(data.title1_all[j]);
data.title2.push_back(data.title2_all[j]);
data.title3.push_back(data.title3_all[j]);
data.l1.push_back(data.l1_all[j]);
// calculate lod
data.title1_lod.push_back(data.title1_lod.back() +
data.title1_all[j].size());
data.title2_lod.push_back(data.title2_lod.back() +
data.title2_all[j].size());
data.title3_lod.push_back(data.title3_lod.back() +
data.title3_all[j].size());
data.l1_lod.push_back(data.l1_lod.back() + data.l1_all[j].size());
}
}
batch_iter += batch_size;
return data;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, '\t', &data);
// load title1 data
std::vector<int64_t> title1_data;
split_to_int64(data[0], ' ', &title1_data);
// load title2 data
std::vector<int64_t> title2_data;
split_to_int64(data[1], ' ', &title2_data);
// load title3 data
std::vector<int64_t> title3_data;
split_to_int64(data[2], ' ', &title3_data);
// load l1 data
std::vector<int64_t> l1_data;
split_to_int64(data[3], ' ', &l1_data);
title1_all.push_back(std::move(title1_data));
title2_all.push_back(std::move(title2_data));
title3_all.push_back(std::move(title3_data));
l1_all.push_back(std::move(l1_data));
}
num_samples = num_lines;
}
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
PaddleTensor title1_tensor, title2_tensor, title3_tensor, l1_tensor;
title1_tensor.name = "title1";
title2_tensor.name = "title2";
title3_tensor.name = "title3";
l1_tensor.name = "l1";
auto one_batch = data->NextBatch();
int title1_size = one_batch.title1_lod[one_batch.title1_lod.size() - 1];
title1_tensor.shape.assign({title1_size, 1});
title1_tensor.lod.assign({one_batch.title1_lod});
int title2_size = one_batch.title2_lod[one_batch.title2_lod.size() - 1];
title2_tensor.shape.assign({title2_size, 1});
title2_tensor.lod.assign({one_batch.title2_lod});
int title3_size = one_batch.title3_lod[one_batch.title3_lod.size() - 1];
title3_tensor.shape.assign({title3_size, 1});
title3_tensor.lod.assign({one_batch.title3_lod});
int l1_size = one_batch.l1_lod[one_batch.l1_lod.size() - 1];
l1_tensor.shape.assign({l1_size, 1});
l1_tensor.lod.assign({one_batch.l1_lod});
// assign data
TensorAssignData<int64_t>(&title1_tensor, one_batch.title1);
TensorAssignData<int64_t>(&title2_tensor, one_batch.title2);
TensorAssignData<int64_t>(&title3_tensor, one_batch.title3);
TensorAssignData<int64_t>(&l1_tensor, one_batch.l1);
// Set inputs.
input_slots->assign({title1_tensor, title2_tensor, title3_tensor, l1_tensor});
for (auto &tensor : *input_slots) {
tensor.dtype = PaddleDType::INT64;
}
}
void SetConfig(AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model;
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<PaddleTensor> input_slots;
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
for (int bid = 0; bid < epoch; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
(*inputs).emplace_back(input_slots);
}
}
// Easy for profiling independently.
TEST(Analyzer_seq_conv1, profile) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
// the first inference result
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
size_t size = GetSize(outputs[0]);
PADDLE_ENFORCE_GT(size, 0);
float *result = static_cast<float *>(outputs[0].data.data());
// output is probability, which is in (0, 1).
for (size_t i = 0; i < size; i++) {
EXPECT_GT(result[i], 0);
EXPECT_LT(result[i], 1);
}
}
}
// Check the fuse status
TEST(Analyzer_seq_conv1, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto fuse_statis = GetFuseStatis(cfg, &num_ops);
}
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_conv1, compare) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(cfg, input_slots_all);
}
} // namespace inference
} // namespace paddle

@ -47,11 +47,8 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
for (size_t i = 0; i < outputs.size(); i++) { for (size_t i = 0; i < outputs.size(); i++) {
auto &out = outputs[i]; auto &out = outputs[i];
auto &ref_out = ref_outputs[i]; auto &ref_out = ref_outputs[i];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, size_t size = VecReduceToInt(out.shape);
[](int a, int b) { return a * b; }); size_t ref_size = VecReduceToInt(ref_out.shape);
size_t ref_size =
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
[](int a, int b) { return a * b; });
EXPECT_GT(size, 0); EXPECT_GT(size, 0);
EXPECT_EQ(size, ref_size); EXPECT_EQ(size, ref_size);
EXPECT_EQ(out.dtype, ref_out.dtype); EXPECT_EQ(out.dtype, ref_out.dtype);
@ -87,10 +84,7 @@ std::unique_ptr<PaddlePredictor> CreateTestPredictor(
} }
} }
size_t GetSize(const PaddleTensor &out) { size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
return std::accumulate(out.shape.begin(), out.shape.end(), 1,
[](int a, int b) { return a * b; });
}
std::unordered_map<std::string, int> GetFuseStatis(AnalysisConfig config, std::unordered_map<std::string, int> GetFuseStatis(AnalysisConfig config,
int *num_ops) { int *num_ops) {

@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/activation_op.h"
#include <string> #include <string>
#include "paddle/fluid/operators/mkldnn_activation_op.h" #include "paddle/fluid/operators/mkldnn_activation_op.h"
#include "paddle/fluid/platform/port.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
@ -105,105 +106,105 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
} }
}; };
__attribute__((unused)) constexpr char SigmoidDoc[] = R"DOC( UNUSED constexpr char SigmoidDoc[] = R"DOC(
Sigmoid Activation Operator Sigmoid Activation Operator
$$out = \frac{1}{1 + e^{-x}}$$ $$out = \frac{1}{1 + e^{-x}}$$
)DOC"; )DOC";
__attribute__((unused)) constexpr char LogSigmoidDoc[] = R"DOC( UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
Logsigmoid Activation Operator Logsigmoid Activation Operator
$$out = \\log \\frac{1}{1 + e^{-x}}$$ $$out = \\log \\frac{1}{1 + e^{-x}}$$
)DOC"; )DOC";
__attribute__((unused)) constexpr char ExpDoc[] = R"DOC( UNUSED constexpr char ExpDoc[] = R"DOC(
Exp Activation Operator. Exp Activation Operator.
$out = e^x$ $out = e^x$
)DOC"; )DOC";
__attribute__((unused)) constexpr char ReluDoc[] = R"DOC( UNUSED constexpr char ReluDoc[] = R"DOC(
Relu Activation Operator. Relu Activation Operator.
$out = \max(x, 0)$ $out = \max(x, 0)$
)DOC"; )DOC";
__attribute__((unused)) constexpr char TanhDoc[] = R"DOC( UNUSED constexpr char TanhDoc[] = R"DOC(
Tanh Activation Operator. Tanh Activation Operator.
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ $$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
)DOC"; )DOC";
__attribute__((unused)) constexpr char TanhShrinkDoc[] = R"DOC( UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
TanhShrink Activation Operator. TanhShrink Activation Operator.
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ $$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
)DOC"; )DOC";
__attribute__((unused)) constexpr char SqrtDoc[] = R"DOC( UNUSED constexpr char SqrtDoc[] = R"DOC(
Sqrt Activation Operator. Sqrt Activation Operator.
$out = \sqrt{x}$ $out = \sqrt{x}$
)DOC"; )DOC";
__attribute__((unused)) constexpr char AbsDoc[] = R"DOC( UNUSED constexpr char AbsDoc[] = R"DOC(
Abs Activation Operator. Abs Activation Operator.
$out = |x|$ $out = |x|$
)DOC"; )DOC";
__attribute__((unused)) constexpr char CeilDoc[] = R"DOC( UNUSED constexpr char CeilDoc[] = R"DOC(
Ceil Activation Operator. Ceil Activation Operator.
$out = ceil(x)$ $out = ceil(x)$
)DOC"; )DOC";
__attribute__((unused)) constexpr char FloorDoc[] = R"DOC( UNUSED constexpr char FloorDoc[] = R"DOC(
Floor Activation Operator. Floor Activation Operator.
$out = floor(x)$ $out = floor(x)$
)DOC"; )DOC";
__attribute__((unused)) constexpr char CosDoc[] = R"DOC( UNUSED constexpr char CosDoc[] = R"DOC(
Cosine Activation Operator. Cosine Activation Operator.
$out = cos(x)$ $out = cos(x)$
)DOC"; )DOC";
__attribute__((unused)) constexpr char SinDoc[] = R"DOC( UNUSED constexpr char SinDoc[] = R"DOC(
Sine Activation Operator. Sine Activation Operator.
$out = sin(x)$ $out = sin(x)$
)DOC"; )DOC";
__attribute__((unused)) constexpr char RoundDoc[] = R"DOC( UNUSED constexpr char RoundDoc[] = R"DOC(
Round Activation Operator. Round Activation Operator.
$out = [x]$ $out = [x]$
)DOC"; )DOC";
__attribute__((unused)) constexpr char ReciprocalDoc[] = R"DOC( UNUSED constexpr char ReciprocalDoc[] = R"DOC(
Reciprocal Activation Operator. Reciprocal Activation Operator.
$$out = \\frac{1}{x}$$ $$out = \\frac{1}{x}$$
)DOC"; )DOC";
__attribute__((unused)) constexpr char LogDoc[] = R"DOC( UNUSED constexpr char LogDoc[] = R"DOC(
Log Activation Operator. Log Activation Operator.
$out = \ln(x)$ $out = \ln(x)$
@ -212,21 +213,21 @@ Natural logarithm of x.
)DOC"; )DOC";
__attribute__((unused)) constexpr char SquareDoc[] = R"DOC( UNUSED constexpr char SquareDoc[] = R"DOC(
Square Activation Operator. Square Activation Operator.
$out = x^2$ $out = x^2$
)DOC"; )DOC";
__attribute__((unused)) constexpr char SoftplusDoc[] = R"DOC( UNUSED constexpr char SoftplusDoc[] = R"DOC(
Softplus Activation Operator. Softplus Activation Operator.
$out = \ln(1 + e^{x})$ $out = \ln(1 + e^{x})$
)DOC"; )DOC";
__attribute__((unused)) constexpr char SoftsignDoc[] = R"DOC( UNUSED constexpr char SoftsignDoc[] = R"DOC(
Softsign Activation Operator. Softsign Activation Operator.
$$out = \frac{x}{1 + |x|}$$ $$out = \frac{x}{1 + |x|}$$

@ -46,6 +46,25 @@ static std::string gethash(const memory::dims& input_dims,
dims2str(paddings) + pooling_type + suffix; dims2str(paddings) + pooling_type + suffix;
} }
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
int padding, int stride) {
return (input_size - kernel_size + 2 * padding) / stride + 1;
}
static inline void CorrectOutputSize(
const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
const std::vector<int>& kernel_size, const std::vector<int>& paddings,
const std::vector<int>& strides,
std::vector<int>& right_bot_padding) { // NOLINT
for (size_t i = 0; i < right_bot_padding.size(); i++) {
int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
paddings[i], strides[i]);
if (desired_size != dst_tz[i + 2]) {
right_bot_padding[i] += strides[i];
}
}
}
template <typename T> template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> { class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public: public:
@ -103,6 +122,13 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto pool_p = auto pool_p =
std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p)); std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
if (pool_p == nullptr) { if (pool_p == nullptr) {
const std::vector<int>& padding_left_top(paddings);
std::vector<int> padding_right_bottom(paddings);
bool ceil_mode = ctx.Attr<bool>("ceil_mode");
if (ceil_mode) {
CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
padding_right_bottom);
}
auto src_md = platform::MKLDNNMemDesc( auto src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), input_format); src_tz, platform::MKLDNNGetDataType<T>(), input_format);
@ -114,8 +140,9 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
mkldnn::memory::format::any); mkldnn::memory::format::any);
std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd = std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
CreatePrimitiveDesc(src_md, dst_md, strides, paddings, ksize, CreatePrimitiveDesc(src_md, dst_md, strides, padding_left_top,
pooling_type, mkldnn_engine); padding_right_bottom, ksize, pooling_type,
mkldnn_engine, ceil_mode);
// save pool_pd into global device context to be referred in backward path // save pool_pd into global device context to be referred in backward path
dev_ctx.SetBlob(key_pool_pd, pool_pd); dev_ctx.SetBlob(key_pool_pd, pool_pd);
@ -171,14 +198,16 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
private: private:
std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc( std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst, const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
const std::vector<int>& stride, const std::vector<int>& padding, const std::vector<int>& stride, const std::vector<int>& padding_left_top,
const std::vector<int>& kernel, const std::string& pooling_type, const std::vector<int>& padding_right_bot, const std::vector<int>& kernel,
const mkldnn::engine& engine) const { const std::string& pooling_type, const mkldnn::engine& engine,
bool ceil_mode) const {
auto pool_desc = mkldnn::pooling_forward::desc( auto pool_desc = mkldnn::pooling_forward::desc(
mkldnn::prop_kind::forward, mkldnn::prop_kind::forward,
pooling_type == "max" ? mkldnn::algorithm::pooling_max pooling_type == "max" ? mkldnn::algorithm::pooling_max
: mkldnn::algorithm::pooling_avg, : mkldnn::algorithm::pooling_avg,
src, dst, stride, kernel, padding, padding, mkldnn::padding_kind::zero); src, dst, stride, kernel, padding_left_top, padding_right_bot,
mkldnn::padding_kind::zero);
auto p_pool_pd = auto p_pool_pd =
new mkldnn::pooling_forward::primitive_desc(pool_desc, engine); new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);

@ -45,10 +45,12 @@ class ReadInferVarType : public framework::VarTypeInference {
framework::VarDesc* reader = block->FindVarRecursive(reader_name); framework::VarDesc* reader = block->FindVarRecursive(reader_name);
auto dtypes = reader->GetDataTypes(); auto dtypes = reader->GetDataTypes();
PADDLE_ENFORCE_EQ(dtypes.size(), out_names.size()); PADDLE_ENFORCE_EQ(dtypes.size(), out_names.size());
auto lod_levels = reader->GetLoDLevels();
for (size_t i = 0; i < dtypes.size(); ++i) { for (size_t i = 0; i < dtypes.size(); ++i) {
framework::VarDesc& out = block->FindRecursiveOrCreateVar(out_names[i]); framework::VarDesc& out = block->FindRecursiveOrCreateVar(out_names[i]);
out.SetType(framework::proto::VarType::LOD_TENSOR); out.SetType(framework::proto::VarType::LOD_TENSOR);
out.SetDataType(dtypes[i]); out.SetDataType(dtypes[i]);
out.SetLoDLevel(lod_levels[i]);
} }
} }
}; };

@ -75,11 +75,11 @@ class SequenceSliceOpKernel : public framework::OpKernel<T> {
} }
for (size_t i = 0; i < n; ++i) { for (size_t i = 0; i < n; ++i) {
PADDLE_ENFORCE_LT(0, offset_data[i], PADDLE_ENFORCE_LE(0, offset_data[i],
"The offset[%d] must greater than zero.", i); "The offset[%d] must greater than zero.", i);
PADDLE_ENFORCE_LT(0, length_data[i], PADDLE_ENFORCE_LT(0, length_data[i],
"The length[%d] must greater than zero.", i); "The length[%d] must greater than zero.", i);
PADDLE_ENFORCE_LT(lod[0][i] + offset_data[i] + length_data[i], PADDLE_ENFORCE_LE(lod[0][i] + offset_data[i] + length_data[i],
lod[0][i + 1], "The target tensor's length overflow."); lod[0][i + 1], "The target tensor's length overflow.");
} }

@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#define EIGEN_USE_GPU #include <algorithm>
#include "paddle/fluid/operators/sgd_op.h" #include "paddle/fluid/operators/sgd_op.h"
#include "paddle/fluid/platform/cuda_primitives.h" #include "paddle/fluid/platform/cuda_primitives.h"
@ -33,22 +33,21 @@ __global__ void SGDKernel(const T* g, const T* p, const T* learning_rate,
} }
} }
template <typename T, int block_size> template <typename T>
__global__ void SparseSGDFunctorKernel(const T* selected_rows, __global__ void SparseSGDFunctorKernel(const T* selected_rows,
const int64_t* rows, const int64_t* rows,
const T* learning_rate, T* tensor_out, const T* learning_rate, T* tensor_out,
int64_t row_numel) { int64_t row_numel, int64_t limit) {
const int ty = blockIdx.y; for (int64_t i = blockIdx.x; i < limit; i += gridDim.x) {
int tid = threadIdx.x; const T* selected_rows_ptr = selected_rows + i * row_numel;
T* tensor_out_ptr = tensor_out + rows[i] * row_numel;
selected_rows += ty * row_numel; for (int64_t index = threadIdx.x; index < row_numel; index += blockDim.x) {
tensor_out += rows[ty] * row_numel; // Since index in rows of SelectedRows can be duplicate, we have to use
// Atomic Operation to avoid concurrent write error.
for (int index = tid; index < row_numel; index += block_size) { paddle::platform::CudaAtomicAdd(
// Since index in rows of SelectedRows can be duplicate, we have to use tensor_out_ptr + index,
// Atomic Operation to avoid concurrent write error. -1.0 * learning_rate[0] * selected_rows_ptr[index]);
paddle::platform::CudaAtomicAdd( }
tensor_out + index, -1.0 * learning_rate[0] * selected_rows[index]);
} }
} }
} // namespace } // namespace
@ -97,13 +96,15 @@ class SGDOpCUDAKernel : public framework::OpKernel<T> {
auto* in_data = in_value.data<T>(); auto* in_data = in_value.data<T>();
auto* out_data = param_out->data<T>(); auto* out_data = param_out->data<T>();
const int block_size = 256; const int kThreadsPerBlock = 256;
dim3 threads(block_size, 1); int thread_x = kThreadsPerBlock;
dim3 grid(1, in_rows.size()); int max_threads = ctx.cuda_device_context().GetMaxPhysicalThreadCount();
SparseSGDFunctorKernel< int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
T, 256><<<grid, threads, 0, ctx.cuda_device_context().stream()>>>(
SparseSGDFunctorKernel<<<max_blocks, thread_x, 0,
ctx.cuda_device_context().stream()>>>(
in_data, in_rows.CUDAData(ctx.GetPlace()), learning_rate->data<T>(), in_data, in_rows.CUDAData(ctx.GetPlace()), learning_rate->data<T>(),
out_data, in_row_numel); out_data, in_row_numel, in_rows.size());
} else { } else {
PADDLE_THROW("Unsupported Variable Type of Grad"); PADDLE_THROW("Unsupported Variable Type of Grad");

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save