parent
7105962f87
commit
fec6f8091f
@ -0,0 +1,86 @@
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
mode = get_config_arg("mode", str, "generator")
|
||||
assert mode in set(["generator",
|
||||
"discriminator",
|
||||
"generator_training",
|
||||
"discriminator_training"])
|
||||
|
||||
is_generator_training = mode == "generator_training"
|
||||
is_discriminator_training = mode == "discriminator_training"
|
||||
is_generator = mode == "generator"
|
||||
is_discriminator = mode == "discriminator"
|
||||
|
||||
print('mode=%s' % mode)
|
||||
noise_dim = 10
|
||||
sample_dim = 2
|
||||
|
||||
settings(
|
||||
batch_size=100,
|
||||
learning_rate=1e-2,
|
||||
learning_method=AdamOptimizer()
|
||||
)
|
||||
|
||||
def discriminator(sample):
|
||||
"""
|
||||
discriminator ouputs the probablity of a sample is from generator
|
||||
or real data.
|
||||
The output has two dimenstional: dimension 0 is the probablity
|
||||
of the sample is from generator and dimension 1 is the probabblity
|
||||
of the sample is from real data.
|
||||
"""
|
||||
param_attr = ParamAttr(is_static=is_generator_training)
|
||||
bias_attr = ParamAttr(is_static=is_generator_training,
|
||||
initial_mean=0,
|
||||
initial_std=0)
|
||||
return fc_layer(input=sample, name="dis_prob", size=2,
|
||||
bias_attr=bias_attr,
|
||||
param_attr=param_attr,
|
||||
act=SoftmaxActivation())
|
||||
|
||||
def generator(noise):
|
||||
"""
|
||||
generator generates a sample given noise
|
||||
"""
|
||||
param_attr = ParamAttr(is_static=is_discriminator_training)
|
||||
bias_attr = ParamAttr(is_static=is_discriminator_training,
|
||||
initial_mean=0,
|
||||
initial_std=0)
|
||||
return fc_layer(input=noise,
|
||||
name="gen_layer1",
|
||||
size=sample_dim,
|
||||
bias_attr=bias_attr,
|
||||
param_attr=param_attr,
|
||||
act=LinearActivation())
|
||||
|
||||
if is_generator_training:
|
||||
noise = data_layer(name="noise", size=noise_dim)
|
||||
sample = generator(noise)
|
||||
|
||||
if is_discriminator_training:
|
||||
sample = data_layer(name="sample", size=sample_dim)
|
||||
|
||||
if is_generator_training or is_discriminator_training:
|
||||
label = data_layer(name="label", size=1)
|
||||
prob = discriminator(sample)
|
||||
cost = cross_entropy(input=prob, label=label)
|
||||
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
|
||||
outputs(cost)
|
||||
|
||||
|
||||
if is_generator:
|
||||
noise = data_layer(name="noise", size=noise_dim)
|
||||
outputs(generator(noise))
|
@ -0,0 +1,141 @@
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import itertools
|
||||
import random
|
||||
import numpy
|
||||
|
||||
from paddle.trainer.config_parser import parse_config
|
||||
from paddle.trainer.config_parser import logger
|
||||
import py_paddle.swig_paddle as api
|
||||
from py_paddle import DataProviderConverter
|
||||
|
||||
|
||||
def CHECK_EQ(a, b):
|
||||
assert a == b, "a=%s, b=%s" % (a, b)
|
||||
|
||||
|
||||
def copy_shared_parameters(src, dst):
|
||||
src_params = [src.getParameter(i)
|
||||
for i in xrange(src.getParameterSize())]
|
||||
src_params = dict([(p.getName(), p) for p in src_params])
|
||||
|
||||
for i in xrange(dst.getParameterSize()):
|
||||
dst_param = dst.getParameter(i)
|
||||
src_param = src_params.get(dst_param.getName(), None)
|
||||
if src_param is None:
|
||||
continue
|
||||
src_value = src_param.getBuf(api.PARAMETER_VALUE)
|
||||
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
|
||||
CHECK_EQ(len(src_value), len(dst_value))
|
||||
dst_value.copyFrom(src_value)
|
||||
dst_param.setValueUpdated()
|
||||
|
||||
|
||||
def get_real_samples(batch_size, sample_dim):
|
||||
return numpy.random.rand(batch_size, sample_dim).astype('float32')
|
||||
|
||||
|
||||
def prepare_discriminator_data_batch(
|
||||
generator_machine, batch_size, noise_dim, sample_dim):
|
||||
gen_inputs = prepare_generator_data_batch(batch_size / 2, noise_dim)
|
||||
gen_inputs.resize(1)
|
||||
gen_outputs = api.Arguments.createArguments(0)
|
||||
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
|
||||
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
|
||||
real_samples = get_real_samples(batch_size / 2, sample_dim)
|
||||
all_samples = numpy.concatenate((fake_samples, real_samples), 0)
|
||||
all_labels = numpy.concatenate(
|
||||
(numpy.zeros(batch_size / 2, dtype='int32'),
|
||||
numpy.ones(batch_size / 2, dtype='int32')), 0)
|
||||
inputs = api.Arguments.createArguments(2)
|
||||
inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(all_samples))
|
||||
inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(all_labels))
|
||||
return inputs
|
||||
|
||||
|
||||
def prepare_generator_data_batch(batch_size, dim):
|
||||
noise = numpy.random.normal(size=(batch_size, dim)).astype('float32')
|
||||
label = numpy.ones(batch_size, dtype='int32')
|
||||
inputs = api.Arguments.createArguments(2)
|
||||
inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(noise))
|
||||
inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(label))
|
||||
return inputs
|
||||
|
||||
|
||||
def find(iterable, cond):
|
||||
for item in iterable:
|
||||
if cond(item):
|
||||
return item
|
||||
return None
|
||||
|
||||
|
||||
def get_layer_size(model_conf, layer_name):
|
||||
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
|
||||
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
|
||||
return layer_conf.size
|
||||
|
||||
|
||||
def main():
|
||||
api.initPaddle('--use_gpu=0', '--dot_period=100', '--log_period=10000')
|
||||
gen_conf = parse_config("gan_conf.py", "mode=generator_training")
|
||||
dis_conf = parse_config("gan_conf.py", "mode=discriminator_training")
|
||||
generator_conf = parse_config("gan_conf.py", "mode=generator")
|
||||
batch_size = dis_conf.opt_config.batch_size
|
||||
noise_dim = get_layer_size(gen_conf.model_config, "noise")
|
||||
sample_dim = get_layer_size(dis_conf.model_config, "sample")
|
||||
|
||||
# this create a gradient machine for discriminator
|
||||
dis_training_machine = api.GradientMachine.createFromConfigProto(
|
||||
dis_conf.model_config)
|
||||
|
||||
gen_training_machine = api.GradientMachine.createFromConfigProto(
|
||||
gen_conf.model_config)
|
||||
|
||||
# generator_machine is used to generate data only, which is used for
|
||||
# training discrinator
|
||||
logger.info(str(generator_conf.model_config))
|
||||
generator_machine = api.GradientMachine.createFromConfigProto(
|
||||
generator_conf.model_config)
|
||||
|
||||
dis_trainer = api.Trainer.create(
|
||||
dis_conf, dis_training_machine)
|
||||
|
||||
gen_trainer = api.Trainer.create(
|
||||
gen_conf, gen_training_machine)
|
||||
|
||||
dis_trainer.startTrain()
|
||||
gen_trainer.startTrain()
|
||||
for train_pass in xrange(10):
|
||||
dis_trainer.startTrainPass()
|
||||
gen_trainer.startTrainPass()
|
||||
for i in xrange(100000):
|
||||
copy_shared_parameters(gen_training_machine, generator_machine)
|
||||
copy_shared_parameters(gen_training_machine, dis_training_machine)
|
||||
data_batch = prepare_discriminator_data_batch(
|
||||
generator_machine, batch_size, noise_dim, sample_dim)
|
||||
dis_trainer.trainOneDataBatch(batch_size, data_batch)
|
||||
|
||||
copy_shared_parameters(dis_training_machine, gen_training_machine)
|
||||
data_batch = prepare_generator_data_batch(
|
||||
batch_size, noise_dim)
|
||||
gen_trainer.trainOneDataBatch(batch_size, data_batch)
|
||||
dis_trainer.finishTrainPass()
|
||||
gen_trainer.finishTrainPass()
|
||||
dis_trainer.finishTrain()
|
||||
gen_trainer.finishTrain()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in new issue