49 lines
1.1 KiB
49 lines
1.1 KiB
# Benchmark
|
|
|
|
Machine:
|
|
|
|
- Server
|
|
- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
|
|
- Laptop
|
|
- DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD
|
|
- i5 MacBook Pro (Retina, 13-inch, Early 2015)
|
|
- Desktop
|
|
- i7-6700k
|
|
|
|
System: CentOS release 6.3 (Final), Docker 1.12.1.
|
|
|
|
PaddlePaddle: paddlepaddle/paddle:latest (TODO: will rerun after 0.11.0)
|
|
|
|
- MKL-DNN tag v0.10
|
|
- MKLML 2018.0.20170720
|
|
- OpenBLAS v0.2.20
|
|
|
|
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.
|
|
|
|
## Benchmark Model
|
|
|
|
### Server
|
|
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
|
|
|
|
Input image size - 3 * 224 * 224, Time: images/second
|
|
|
|
- VGG-19
|
|
|
|
| BatchSize | 64 | 128 | 256 |
|
|
|--------------|-------| -----| --------|
|
|
| OpenBLAS | 7.82 | 8.62 | 10.34 |
|
|
| MKLML | 11.02 | 12.86 | 15.33 |
|
|
| MKL-DNN | 27.69 | 28.8 | 29.27 |
|
|
|
|
|
|
chart on batch size 128
|
|
TBD
|
|
|
|
- ResNet
|
|
- GoogLeNet
|
|
|
|
### Laptop
|
|
TBD
|
|
### Desktop
|
|
TBD
|