You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/doc/design/mkldnn/README.MD

121 lines
7.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Intel® MKL-DNN on PaddlePaddle: Design Doc
我们计划将Intel深度神经网络数学库(**MKL-DNN**\[[1](#references)\])集成到PaddlePaddle充分展现英特尔平台的优势有效提升PaddlePaddle在英特尔架构上的性能。
我们短期内的基本目标是:
- 完成常用layer的MKL-DNN实现。
- 完成常见深度神经网络VGGGoogLeNet 和 ResNet的MKL-DNN实现。
## Contents
- [Overview](#overview)
- [Actions](#actions)
- [CMake](#cmake)
- [Layers](#layers)
- [Activations](#activations)
- [Weights](#weights)
- [Unit Tests](#unit-tests)
- [Protobuf Messages](#protobuf-messages)
- [Python API](#python-api)
- [Demos](#demos)
- [Benchmarking](#benchmarking)
- [Others](#others)
- [Design Concerns](#design-concerns)
## Overview
我们会把MKL-DNN作为第三方库集成进PaddlePaddle整体框架图
<div align="center">
<img src="image/overview.png" width=350><br/>
Figure 1. PaddlePaddle on IA.
</div>
## Actions
我们把集成方案大致分为了如下几个方面。
### CMake
我们会在`CMakeLists.txt`中会给用户添加一个`WITH_MKL`的开关,他是负责`WITH_MKLML`和`WITH_MKLDNN`的总开关。
当打开`WITH_MKL`时会开启MKLML的功能作为PaddlePaddle的CBLAS和LAPACK库同时会开启Intel OpenMP用于提高MKLML的性能。 如果系统支持AVX2指令集及以上同时会开启MKL-DNN功能。
当关闭`WITH_MKL`时MKLML和MKL-DNN功能会同时关闭。
所以,我们会在`cmake/external`目录新建`mkldnn.cmake`和`mklml.cmake`文件它们会在编译PaddlePaddle的时候下载对应的软件包并放到PaddlePaddle的third party目录中。
### Layers
所有MKL-DNN相关的C++ layers都会按照PaddlePaddle的目录结构存放在
`paddle/gserver/layers`中,并且文件名都会一以*MKLDNN*开头。
所有MKL-DNN的layers都会继承于一个叫做`MKLDNNLayer`的父类该父类继承于PaddlePaddle的基类`Layer`。
在`MKLDNNLayer`中会提供一些必要的接口和函数,并且会写好`forward`和`backward`的基本逻辑。部分函数定义为纯虚函数,子类只需要实现这些函数即可。
### Activations
由于在PaddlePaddle中激活函数是独立于layer概念的所以会在`paddle/gserver/activations`目录下添加`MKLDNNActivation.h`和`MKLDNNActivation.cpp`文件用于定义和使用MKL-DNN的接口。
### Weights
由于有些layer是含有参数的我们会尽量让MKL-DNN的参数与PaddlePaddle中`parameter`共享一块内存。
同时由于MKL-DNN在训练时使用的参数layout可能与PaddlePaddle默认的`nchw`不一致我们会在网络训练的开始和结束时分别转换这个layout使得最终保存的参数格式与PaddlePaddle一致。
### Unit Tests
会在`paddle/gserver/test`目录下添加`test_MKLDNN.cpp`和`MKLDNNTester.*`用于MKL-DNN的测试。
测试分为每个layer(或activation)的单元测试和简单网络的整体测试。
每个测试会对比PaddlePaddle中CPU算出的结果与MKL-DNN的结果小于某个比较小的阈值认为通过。
### Protobuf Messages
根据具体layer的需求可能会在`proto/ModelConfig.proto`里面添加必要的选项。
### Python API
目前只考虑**v1 API**。
计划在`python/paddle/trainer/config_parser.py`里面添加`use_mkldnn`这个选择方便用户选择使用MKL-DNN的layers。
具体实现方式比如:
```python
use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
if use_mkldnn
self.layer_type = mkldnn_*
```
所有MKL-DNN的layer type会以*mkldnn_*开头,以示区分。
并且可能在`python/paddle/trainer_config_helper`目录下的`activations.py `和`layers.py`里面添加必要的MKL-DNN的接口。
### Demos
会在`v1_api_demo`目录下添加一个`mkldnn`的文件夹里面放入一些用于MKL-DNN测试的demo脚本。
### Benchmarking
会添加`benchmark/paddle/image/run_mkldnn.sh`用于测试使用MKL-DNN之后的性能。
### Others
1. 如果在使用MKL-DNN的情况下会把CPU的Buffer对齐为64。
2. 深入PaddlePaddle寻找有没有其他可以优化的可能进一步优化。比如可能会用OpenMP改进SGD的更新性能。
## Design Concerns
为了更好的符合PaddlePaddle的代码风格\[[2](#references)\]同时又尽可能少的牺牲MKL-DNN的性能\[[3](#references)\]。
我们总结出一些特别需要注意的点:
1. 使用**deviceId_**。为了尽可能少的在父类Layer中添加变量或者函数我们决定使用已有的`deviceId_`变量来区分layer的属性定义`-2`为`MKLDNNLayer`特有的设备ID。
2. 重写父类Layer的**init**函数,修改`deviceId_`为`-2`代表这个layer是用于跑在MKL-DNN的环境下。
3. 创建`MKLDNNMatrix`,同时继承`CpuMatrix`和`mkldnn::memory`。用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。
4. 创建`MKLDNNBase`定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到`MKLDNNStream`和`CPUEngine`,和未来可能还会用到`FPGAEngine`等。
5. 每个`MKLDNNlayer`都会有`inVal_`,`inGrad_`,`outVal_`和`outGrad_`分别代表input value input gradientoutput value和output gradient。他们会存放MKL-DNN用到的internal memory。同时还会定义以*ext*开头的`MKLDNNMatrix`(表示external的memory)主要是在格式与PaddlePaddle默认的`nchw`格式不匹配时,用于转换内存的工作。必要的转换函数也会在`MKLDNNLayer`中提前定义好每个子类只需要调用定义好的reset buffer函数即可。
6. 每个`MKLDNNlayer`的resetbuffer相关的函数包括reset input、output的Value和grad他们会根据输入参数reset internal和external的memory当然这两者也可以相等即表示不需要转换。只需要把握一个原则每个`MKLDNNlayer`的子类只需要使用internal的memory就可以了所有external的转换工作在父类的reset函数中都提前准备好了。
7. 一般来说external的memory会尽量与PaddlePaddle中的`value`和`grad`共享内存。同时每个`MKLDNNLayer`中的external output value和gradient(也就是`extOutVal_`和`extOutGrad_`)必须分别与`output_.value`和`output_.grad`共享内存因为PaddlePaddle的activation会直接使用`output_.value`和`output_.grad`。如果不需要external的buffer用于转换那么internal的buffer也会与他们共享内存。
8. 如果MKL-DNN layer的后面接有cpu device那么就会使`output_.value`与`extOutVal_`共享内存,同时数据格式就是`nchw`这样下一个cpu device就能拿到正确的数据。在有cpu device的时候external的memory的格式始终是`nchw`或者`nc`。
9. 由于MKL-DNN的输出操作都是覆盖data的不是在原来的数据上累加所以当网络出现分支时在`backward`时会需要merge不同layer的梯度。`MKLDNNlayer`中会实现merge的方法此时每个小分支的input gradient会先临时保存在一个`MKLDNNMatrix`中由分支处的layer负责求和并把结果放到这个layer的`output_.grad`中。所以整体上,每个子类并不会需要关心分支的事情,也是在父类都实现好了。
10. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag用于选择是否使用MKL-DNN的相关功能。
## References
1. [Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)](https://github.com/01org/mkl-dnn "Intel MKL-DNN")
2. [原来的方案](https://github.com/PaddlePaddle/Paddle/pull/3096)会引入**nextLayer**的信息。但是在PaddlePaddle中无论是重构前的layer还是重构后的op都不会想要知道next layer/op的信息。
3. MKL-DNN的高性能格式与PaddlePaddle原有的`NCHW`不同(PaddlePaddle中的CUDNN部分使用的也是`NCHW`,所以不存在这个问题)所以需要引入一个转换方法并且只需要在必要的时候转换这种格式才能更好的发挥MKL-DNN的性能。