You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/demo_ci/windows_mobilenet.cc

93 lines
2.8 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "paddle/include/paddle_inference_api.h"
DEFINE_string(modeldir, "", "Directory of the inference model.");
DEFINE_bool(use_gpu, false, "Whether use gpu.");
namespace paddle {
namespace demo {
void RunAnalysis() {
// 1. create AnalysisConfig
AnalysisConfig config;
if (FLAGS_modeldir.empty()) {
LOG(INFO) << "Usage: path\\mobilenet --modeldir=path/to/your/model";
exit(1);
}
// CreateConfig(&config);
if (FLAGS_use_gpu) {
config.EnableUseGpu(100, 0);
}
config.SetModel(FLAGS_modeldir + "/__model__",
FLAGS_modeldir + "/__params__");
// use ZeroCopyTensor, Must be set to false
config.SwitchUseFeedFetchOps(false);
// 2. create predictor, prepare input data
std::unique_ptr<PaddlePredictor> predictor = CreatePaddlePredictor(config);
int batch_size = 1;
int channels = 3;
int height = 300;
int width = 300;
int nums = batch_size * channels * height * width;
float* input = new float[nums];
for (int i = 0; i < nums; ++i) input[i] = 0;
// 3. create input tensor, use ZeroCopyTensor
auto input_names = predictor->GetInputNames();
auto input_t = predictor->GetInputTensor(input_names[0]);
input_t->Reshape({batch_size, channels, height, width});
input_t->copy_from_cpu(input);
// 4. run predictor
predictor->ZeroCopyRun();
// 5. get out put
std::vector<float> out_data;
auto output_names = predictor->GetOutputNames();
auto output_t = predictor->GetOutputTensor(output_names[0]);
std::vector<int> output_shape = output_t->shape();
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
delete[] input;
}
} // namespace demo
} // namespace paddle
int main(int argc, char** argv) {
::GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
paddle::demo::RunAnalysis();
std::cout << "=========================Runs successfully===================="
<< std::endl;
return 0;
}