You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
5.6 KiB
154 lines
5.6 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from py_paddle import swig_paddle
|
|
import util
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
class TestIVector(unittest.TestCase):
|
|
def test_createZero(self):
|
|
m = swig_paddle.IVector.createZero(10, False)
|
|
self.assertIsNotNone(m)
|
|
for i in xrange(10):
|
|
self.assertEqual(m[i], 0)
|
|
m[i] = i
|
|
self.assertEqual(m[i], i)
|
|
|
|
m = swig_paddle.IVector.createZero(10)
|
|
self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
|
|
self.assertEqual(m.getData(), [0] * 10)
|
|
|
|
def test_create(self):
|
|
m = swig_paddle.IVector.create(range(10), False)
|
|
self.assertIsNotNone(m)
|
|
for i in xrange(10):
|
|
self.assertEqual(m[i], i)
|
|
|
|
m = swig_paddle.IVector.create(range(10))
|
|
self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
|
|
self.assertEqual(m.getData(), range(10))
|
|
|
|
def test_cpu_numpy(self):
|
|
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
|
|
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec, False)
|
|
self.assertEqual(vec.shape[0], int(iv.__len__()))
|
|
vec[4] = 832
|
|
for i in xrange(len(iv)):
|
|
self.assertEqual(vec[i], iv[i])
|
|
vec2 = iv.toNumpyArrayInplace()
|
|
vec2[1] = 384
|
|
for i in xrange(len(iv)):
|
|
self.assertEqual(vec[i], iv[i])
|
|
self.assertEqual(vec2[i], iv[i])
|
|
|
|
def test_gpu_numpy(self):
|
|
if swig_paddle.isGpuVersion():
|
|
vec = swig_paddle.IVector.create(range(0, 10), True)
|
|
assert isinstance(vec, swig_paddle.IVector)
|
|
self.assertTrue(vec.isGpu())
|
|
self.assertEqual(vec.getData(), range(0, 10))
|
|
num_arr = vec.copyToNumpyArray()
|
|
assert isinstance(num_arr, np.ndarray) # for code hint.
|
|
num_arr[4] = 7
|
|
self.assertEquals(vec.getData(), range(0, 10))
|
|
|
|
vec.copyFromNumpyArray(num_arr)
|
|
expect_vec = range(0, 10)
|
|
expect_vec[4] = 7
|
|
self.assertEqual(vec.getData(), expect_vec)
|
|
|
|
def test_numpy(self):
|
|
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
|
|
iv = swig_paddle.IVector.createVectorFromNumpy(vec)
|
|
self.assertEqual(iv.isGpu(), swig_paddle.isUsingGpu())
|
|
self.assertEqual(iv.getData(), list(vec))
|
|
|
|
|
|
class TestVector(unittest.TestCase):
|
|
def testCreateZero(self):
|
|
v = swig_paddle.Vector.createZero(10, False)
|
|
self.assertIsNotNone(v)
|
|
for i in xrange(len(v)):
|
|
self.assertTrue(util.doubleEqual(v[i], 0))
|
|
v[i] = i
|
|
self.assertTrue(util.doubleEqual(v[i], i))
|
|
|
|
v = swig_paddle.Vector.createZero(10)
|
|
self.assertEqual(v.isGpu(), swig_paddle.isUsingGpu())
|
|
self.assertEqual(v.getData(), [0] * 10)
|
|
|
|
def testCreate(self):
|
|
v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)], False)
|
|
self.assertIsNotNone(v)
|
|
for i in xrange(len(v)):
|
|
self.assertTrue(util.doubleEqual(v[i], i / 100.0))
|
|
self.assertEqual(100, len(v))
|
|
|
|
v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)])
|
|
self.assertEqual(v.isGpu(), swig_paddle.isUsingGpu())
|
|
self.assertEqual(100, len(v))
|
|
vdata = v.getData()
|
|
for i in xrange(len(v)):
|
|
self.assertTrue(util.doubleEqual(vdata[i], i / 100.0))
|
|
|
|
def testCpuNumpy(self):
|
|
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
|
|
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr, False)
|
|
assert isinstance(vec, swig_paddle.Vector)
|
|
numpy_arr[0] = 0.1
|
|
for n, v in zip(numpy_arr, vec):
|
|
self.assertTrue(util.doubleEqual(n, v))
|
|
|
|
numpy_2 = vec.toNumpyArrayInplace()
|
|
vec[0] = 1.3
|
|
for x, y in zip(numpy_arr, numpy_2):
|
|
self.assertTrue(util.doubleEqual(x, y))
|
|
|
|
for x, y in zip(numpy_arr, vec):
|
|
self.assertTrue(util.doubleEqual(x, y))
|
|
|
|
numpy_3 = vec.copyToNumpyArray()
|
|
numpy_3[0] = 0.4
|
|
self.assertTrue(util.doubleEqual(vec[0], 1.3))
|
|
self.assertTrue(util.doubleEqual(numpy_3[0], 0.4))
|
|
|
|
for i in xrange(1, len(numpy_3)):
|
|
util.doubleEqual(numpy_3[i], vec[i])
|
|
|
|
def testNumpy(self):
|
|
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
|
|
vec = swig_paddle.Vector.createVectorFromNumpy(numpy_arr)
|
|
self.assertEqual(vec.isGpu(), swig_paddle.isUsingGpu())
|
|
vecData = vec.getData()
|
|
for n, v in zip(numpy_arr, vecData):
|
|
self.assertTrue(util.doubleEqual(n, v))
|
|
|
|
def testCopyFromNumpy(self):
|
|
vec = swig_paddle.Vector.createZero(1, False)
|
|
arr = np.array([1.3, 3.2, 2.4], dtype="float32")
|
|
vec.copyFromNumpyArray(arr)
|
|
for i in xrange(len(vec)):
|
|
self.assertTrue(util.doubleEqual(vec[i], arr[i]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
swig_paddle.initPaddle("--use_gpu=0")
|
|
suite = unittest.TestLoader().loadTestsFromTestCase(TestVector)
|
|
unittest.TextTestRunner().run(suite)
|
|
if swig_paddle.isGpuVersion():
|
|
swig_paddle.setUseGpu(True)
|
|
unittest.main()
|